Розміщення атомів у сплавах, Детальна інформація

Розміщення атомів у сплавах
Тип документу: Курсова
Сторінок: 6
Предмет: Хімія
Автор:
Розмір: 31.4
Скачувань: 1948
В літературі [4] такі моделі взаємного розташування атомів, що можуть бути охарактеризовані терміном “ближній порядок”: а) гомогенний “рідиноподібний” ближній порядок, при якому всі вузли решітки кристалу є рівноправними і кожен з них може бути обраний за початковий; б) розподіл атомів у вигляді малих областей однакового складу з правильним розташуванням атомів на їх границях; в) розподіл атомів у вигляді подібних областей з правильно розташованими атомами, що розділені прошарками з неупорядкованим розташуванням атомів різного сорту; г) розподіл атомів у вигляді аналогічних областей, але з поступовим погіршенням правильності при наближенні до периферії областей; д) розподіл атомів у вигляді субмікрообластей, що розрізняються по складу, ступеню та типу порядку. Ймовірні і проміжні випадки.

Як показано у [4], рівноважний ближній порядок визначається мінімумом вільної енергії.

Ближній порядок виникає за рахунок різниці в міжатомних взаємодіях, існуючи між атомами різного сорту в твердих розчинах. Тому проблема взаємодій, обумовлених ближнім порядком, тісно пов’язана з проблемою міжатомних взаємодій в реальних твердих розчинах, однією з найбільш фундаментальних проблем фізики конденсованих середовищ.

Експериментальні дані свідчать про те, що такі впливи, як деформація, опромінення, різна термічна обробка, істотно впливають на локальний розподіл атомів по вузлам решітки. Деформація приводить до зменшення ступеня ближнього порядку; аналогічно впливає факт підвищення температури (але не для всіх сплавів). Більш того, виявлені випадки немонотонної температурної залежності окремих параметрів \x03B1і. Встановлена немонотонна зміна ступеня порядку з температурою загартування. Це явище в багатьох випадках пояснюють “доупорядкуванням” в процесі гартування від високої температури за рахунок міграції надлишкових вакансій. Виявлено підсилення ступеня порядку при опроміненні при кімнатних температурах в CuAl [6].

Ретельно проаналізувавши численні експериментальні дані, автори [6] зобразили таку схему встановлення ближнього порядку в сплаві в процесі відпалу після деформації або інших обробок, наприклад опромінення нейтронами та в ряду випадків після загартування [12]. Процес починається зі зростання ступеня ближнього порядку на першій координаційній сфері, який швидше йде в насичених дефектами областях кристалу. Потім він розповсюджується на інші координаційні сфери. Поступово впорядкування починає йти в неспотворених областях кристалу, в яких швидкість дифузійних процесів менше, ніж у спотворених. Одночасно йдуть процеси утворення концентраційних неоднорідностей, а також процеси розсмоктування дефектів, внесених обробкою. Однак вони відбуваються повільніше, ніж процес встановлення ближнього порядку, оскільки останній пов’язаний з міграцією атомів на значно менші відстані. Поява областей різного складу та ступеня порядку в свою чергу може призвести до зміни енергії впорядкування, оскільки остання пов’язана з електронною та спіновою взаємодією, що залежить від складу. Ці ефекти особливо відчутні з суттєво різними фізичними характеристиками компонентів. Поблизу дефектів енергія впорядкування також може відрізнятись від енергії в неспотвореному твердому розчині. Характер остаточної релаксації при відпалі, що визначається прагненням вільної енергії до мінімуму, буде залежати від досягнутого на початковій стадії стану. Якщо на цій стадії неоднорідності дійсно виникли (в достатній кількості), то в подальшому енергія твердого розчину може знижуватись або за рахунок розсмоктування неоднорідностей, або внаслідок зміни типу впорядкування в деяких областях розчину (наприклад, по типу сусідньої фази). У сплавах з малою швидкістю дифузії останній з цих процесів може бути енергетично вигіднішим, тоді неоднорідності не будуть розсмоктуватись протягом тривалого часу. Ще невідомо, чи завжди в однорідному твердому розчині ці неоднорідності будуть розсмоктуватись до кінця. Можливим наслідком вкладу енергії дефектів та неоднорідностей може бути поява ближнього впорядкування по типу фаз, що не спостерігаються на рівноважній діаграмі стану.

В роботі [8] були виміряні параметри \x03B11 та побудована залежність \x03B11 від температури відпалу для Cu3Al. Отримана складна залежність, пов’язана, за думкою авторів, з необхідністю збільшення часу для встановлення дійсно рівноважних значень ступеня ближнього порядку. На прикладі NiPt було показано, що \x03B1і при ізотермічному відпалі (принаймні після деформації) проходить через максимум, і навіть відпал при Т=700оС протягом 50 годин не доводить сплав до повної рівноваги.

Таким чином, необхідно відзначити, що для досягнення постійних значень \x03B1і при відпалі після деформації необхідно досить багато часу. Визначено[6], що \x03B1і має складну залежність, що не вичерпується простим співвідношенням \x03B1і~1/T. Складна залежність \x03B1і як приклад, подана в [8]. В CuAl виявлено аномалію теплоємності. Ці факти ще раз свідчать про необхідність комплексних вимірів фізичних властивостей ближнього порядку. Різні дефекти решітки (вакансії, дислокації, дефекти упаковки, тощо) істотно впливають на кінетику встановлення ближнього порядку та на структуру розподілу атомів в решітці, що досягається в певні скінченні проміжки часу. Ряд процесів, що відбуваються в однофазних твердих розчинах, імовірно є аналогічними процесам, що відбуваються в сплавах, що розпадаються поблизу границі розчинності. В однофазних твердих розчинах при відпалі після деформації має місце спрямована дифузія, тому можуть виникнути концентраційні неоднорідності та області, збагачені (збіднені) другим компонентом, в яких виникає значний ближній порядок. В міру зростання температури такі утворення можуть розсмоктуватися, що супроводжується зниженням ступеня порядку. Ці явища і обумовлюють складну залежність ступеня порядку від температури і часу.

Значний прогрес в експериментальному дослідженні фазового переходу порядок-безладдя в конкретних сплавах був досягнутий в останні десятиліття. До теперішнього моменту такі переходи були вивчені в приблизно 50 бінарних сплавах [13,14]. Ось основні риси цього переходу [35]. По-перше, це є дифузійне перетворення, до того ж дифузія на короткі відстані відбувається в незмінній або майже незмінній кристалічній гратці. По-друге, це є конфігураційний перехід, оскільки змінюється розташування атомів різного сорту по вузлах кристалічної гратки. Об’ємні зміни, тетрагональні та інші спотворення гратки, тобто неконфігураційні дефекти, підкоряються конфігураційному переходу, наприклад, симетричному. Тому, по-третє, параметрами переходу є параметри дальнього порядку \x03B7. По-четверте, фазовий перехід порядок-безладдя є перетворенням між станом з неповним дальнім порядком та ближнім. Зникненню дальнього порядку передує часткове розупорядкування, а невпорядкований стан є невпорядкованим у розумінні дальнього порядку, ближній в ньому завжди має місце.

1.2 Вплив упорядкування атомів на електроопір сплавів

Основні закономірності, що виявляються при дослідженні електроопору металів та сплавів, можна якісно зрозуміти, беручи до уваги хвильові властивості електронів провідності. Електронна хвиля утворює в просторі потенціал, що є періодичною функцією координат. Така ідеальна кристалічна решітка не має електроопору. Коли ж кристалічна решітка металу або сплаву містить які-небудь спотворення, що ведуть до порушення періодичності потенціалу, то з’являється розсіяння електронних хвиль, що обумовлює електроопір. Існує три основних види спотворень кристалічної гратки, що приводять до появи електроопору: 1) тепловий рух атомів; 2) порушення періодичності, пов’язане з чергуванням атомів різного сорту або наявністю вакансій (дірок) на вузлах кристалічної гратки, а також з наявністю впроваджених атомів, та 3) статичні спотворення решітки, що пов’язані зі зміщенням центрів коливань атомів від їх правильних місцезнаходжень.

В чистих металах, що не мають статичних спотворень та дірок, повинна існувати лише перша з вищезгаданих причин. Відповідний електроопір металу буде залежати і при абсолютному нулі повинен зовсім зникнути. Друга причина розсіяння електронів, що має місце в неповністю впорядкованих металах та сплавах, які мають дірки в вузлах та атоми в міжвузлових положеннях решітки, обумовлює додатковий електроопір, що залишається і при Т=0оК. До цього ж результату веде і наявність статичних спотворень решітки. Електроопір, що залишається при Т=0оК, називають залишковим електроопором. Залишковий електроопір може бути визначений з вимірів електроопору при низьких температурах та екстраполяції результатів до температури абсолютного нуля. Вплив неоднорідностей решітки, що пов’язані з порушенням порядку в чергуванні атомів та статичними спотвореннями, на електроопір при високих температурах, можна дослідити, усунувши пов’язану з тепловим коливанням атомів частину електроопору загартуванням до низьких температур.

Існують три основних, додаткових, в порівнянні з чистими металами, фактори, комбінації яких визначають особливості поведінки електроопору при відпалі, деформації або опроміненні твердих розчинів. Першим з них є зміна перерізу розсіяння електронів при встановленні або руйнуванні ближнього порядку (зміна \x2206\x03B1і>0 призводить до \x2206\x03C1>0, та \x2206\x03B1<0 до \x2206\x03C1<0). Другим фактором є зміна концентрації електронів провідності, що виникає за рахунок зміни електронної структури, обумовленої перерозподілом атомів в кристалічній решітці твердих розчинів (зміною ближнього порядку, появою чи руйнуванням концентраційних неоднорідностей). При цьому зниження електронної концентрації n* веде до зростання електроопору \x03C1 і навпаки.

В бінарних невпорядкованих спавах А-В типу заміщення з необмеженою розчинністю компонентів залишковий електроопір \x03C1о повинен істотно залежати від складу сплаву. Як добавлення атомів В до чистого металу А, так і додавання атомів А до чистого металу В порушує правильність кристалічної решітки і \x03C1о повинне в обох випадках зростати від 0 (для неспотворених металів), досягаючи максимуму в середній частині концентраційної діаграми. Дослідження сплавів Ag-Au різного складу [16] підтверджують це.

Аналізуючи поведінку \x03C1о (СА) або \x03C1о (СВ) в сплаві АВ в літературі [17] помічено декілька цікавих особливостей, які в основному пояснюються впливом дальнього порядку. Це, наприклад, поява різких мінімумів поблизу точок, що відповідають стехіометричному складу. Була виявлена ще така закономірність: що вища температура відпалу, тим більший електроопір, що пояснюється меншим ступенем дальнього порядку при більш високій температурі [17]. Якщо досліди по вивченню температурної складової електроопору проводити так, щоб сплав при кожній температурі знаходився в рівновазі, то з’явиться додаткова зміна електроопору, що пов’язана зі зміною ближнього та дальнього порядку. При температурі переходу порядок-безладдя на кривій залежності \x03C1(Т) повинен спостерігатися злам, якщо фазовий перехід є переходом 2-го роду. У випадку фазового переходу 1-го роду стрибкоподібно змінюється не тільки температурний коефіцієнт, але й сам опір.

1.3 Вплив опромінення швидкими частинками на впорядкування сплавів

Нові можливості дослідження кінетики процесів впорядкування з’являються при вивченні впливу потоків швидких частинок на сплави, що упорядковуються. Дія опромінення швидкими частинками різного сорту на сплави є різною. Опромінення може здійснюватись зарядженими важкими частинками (протонами, \x03B1-частинками, уламками ділення і т. д.), нейтронами, електронами, \x03B3-квантами.

Електрони, що отримали енергію від налітаючої частинки, в результаті взаємодії з кристалічною граткою в свою чергу передають їй енергію, що призводить до нагріву кристалу. При опроміненні металів електронами останні віддають значну частину своєї енергії саме електронам решітки, а не важким частинкам, на відміну від інших типів опромінення. В результаті в кристалі виникає відносно менша кількість дефектів.

В області кристала, що знаходиться поблизу траєкторії пролітаючої частинки, утворюється велика кількість дефектів, і окрім цього в результаті виділення енергії в цій області спостерігається значне локальне збільшення температури, що може навіть призвести до плавлення металу в цій області. Наступне швидке охолодження цих областей, як наслідок теплообміну з іншими частинами кристалу, може привести до ефектів, аналогічних гартуванню металу у вказаних областях від досягнутих при пролітанні частинки високих температур. У випадку опромінення упорядкованого сплаву в області локального нагріву може виникнути невпорядкована фаза, що фіксується таким нагріванням.

Виникнення великої кількості надлишкових (нерівноважних) дефектів кристалічної решітки може призвести до значного збільшення швидкості протікання різних типів процесів, пов’язаних з переміщенням атомів в твердому тілі. З часом міжвузлові атоми заповнюють вакансійні місця, що веде до додаткового виділення тепла. Зменшення числа дефектів призводить до уповільнення вищезгаданих процесів.

Вплив опромінення на сплави, що упорядковуються, обумовлений двома причинами. По-перше, локальний нагрів може привести до зміни стану упорядкування, і по-друге, дефекти, що виникли при таких температурах, коли вони мають достатню рухомість, будуть прискорювати процес наближення до рівноважного (при даній температурі) стану сплаву.

Електрони з енергією 0,5 еВ створюють зміщення у вигляді окремих пар Френеля, розділених кількома атомними відстанями[17]. Рухливість вакансій спостерігається при Т>~0,25TM (ТМ – температура плавлення). При температурах менше 0,6ТМ вакансії та міжвузлові атоми утворюються набагато швидше, ніж вони можуть відходити на дислокації, границі зерен та інші стоки. Тому утворюється їх надлишок по відношенню до рівноважної кількості.

Опромінення електронами значно прискорює утворення збагачених Zn зон Гін’є-Престона та рівноважної \x03B2-фази в сплавах AgZn [17].

Результати розрахунків сегрегації Zn на поверхні пор в опроміненому сплаві AgZn показали, що ступінь сегрегації залежить віл температури, радіусу пори та швидкості атомного зміщення [17].

1.4 Діаграма стану та деякі параметри сплаву AgZn.

Багато важливих характеристик, таких як розчинність, точки плавлення, розпаду, фазових перетворень, тощо, можна отримати з діаграми станів.

Відомо [24], що з більшістю легкоплавких металів срібло утворює складні діаграми стану з кількома проміжними фазами і значними областями твердих розчинів на основі срібла. Це такі системи, як AgAl, AgMg, AgLi, AgIn, AgZn, AgCd, тощо. Багато з цих сплавів вже знайшли застосування у промисловості.

Серед класифікації сплавів першим історично виділеним класом електронних сполук були фази Юм-Розері [33]. Це досить обширний клас металічних сполук, що утворюються в сплавах благородних та перехідних металів з простими та полівалентними, а в ряді випадків – і на основі полівалентних металів. Для цих фаз характерне певне число валентних електронів на атом і на початку вони виділені як співвідношення Юм-Розері (е/а = 3/2, 21/13, 7/4). Наявність таких фаз визначено і у AgZn.

Фаза Співвідн. Ю.-Р. Решітка Інтервал реалізації е/а Розмірні обмеження Впорядкування

( 3/2=1,5 ОЦК 1,01-1,70 0,05 Так

( 3/2=1,5 ГПУ 1,22-1,83 0,15 Так

The online video editor trusted by teams to make professional video in minutes