The influence of isovalent impurity of germanium upon the electrophysicalproperties of silicon, Детальна інформація
The influence of isovalent impurity of germanium upon the electrophysicalproperties of silicon
The influence of isovalent impurity of germanium upon the electrophysical
properties of silicon
), deforming the crystal lattice, changing its constant and thus influencing upon electrophysical properties of the crystal.
The paper presents the results of the investigation of electrophysical parameters and piezoresistanse effects in the crystals Si of n-type with a concentration of germanium NGe=2(1019(2(1020cm-3 by measuring temperature dependencies of conductivity, Hall coefficient, piezoresistance and piezo-Hall-effect. The object of the investigation were the crystals grown by Chokhralsky method with content of oxygen of (6(8)(1017cm-3. The measurements of control samples without isovalent impurity of germanium (IIGe) were performed for comparison.
Figure 1 shows the temperature dependences of electron mobility ( on the temperature in pure n-silicon (curve 1) and in n-silicon with different concentration of IIGe (dependences 2,3). Numbers of curves in Figure 1 correspond to the numbers of samples in Table 1.
Table 1
N (
((cm N(10-13
cm-3 NGe(10-19
cm-3 N0(10-17
cm-3 (300K
cm2/V(s (77K
cm2/V(s
1 130 3.1 - 7 1500 23000
2 81 5.1 2 6 1500 21000
3 65 6.2 4 6 1500 19500
4 50 9 7 6.5 1450 18500
5 98 4 20 6 1480 16400
Detailed experimental and theoretical investigations of electron mobility in n-silicon [2] showed that in the region of mainly phonon scattering it is determined both by in-valley and inter-valley scattering. Theoretical calculations, performed with account of scattering on long wave acoustic phonons and inter-valley pulse scattering at interaction of electrons and the phonons of corresponding averaged temperatures (1=190 K and (2=630 K, show the sufficiently detailed coincidence with the experiment in a wide temperature range 77(450 K. It is confirmed by plot 1, Fig.1, which also shows the contributions of different scattering mechanisms according to [2]. Plot 1 has a distinctive bending in 100K range. Such behavior of the curve and the deviation from the dotted line which determines the temperature dependency of electron mobility in pure n-silicon at scattering on acoustic oscillations of the lattice may be explained by the increasing contribution of inter-valley scattering at T(100 K. As it is seen in Fig.1, the slope of the dependency lg(()=lg(T) changes from 1.5 to 2.3. The change of power exponent in dependency ((T-m in the region of phonon scattering for n-silicon is revealed in paper [3], in which the authors assume that the abrupt decrease of ( at NGe(1020cm-3 testifies to the change of phonon spectrum and to the elastic stress relaxation via formation of modular structure of crystals. As it is seen in Fig. 1, the identity of all the curves slopes in practically important temperature range of 220(450K with the major contribution of inter-valley scattering testifies to the principal role of inter-valley scattering.
The decrease of electron mobility at temperatures T<200 K is a characteristic peculiarity of dependences lg(()=lg(T) for crystals Si in comparison with pure n-Si. A like decrease of mobility is observed with the increase of the concentration of ionized impurities [4], however, in crystals 1, 2, 3, 5 (Table 1) the impurities concentration is practically equal. Hence, the contribution in electron scattering is that of IIGe. Therefore, at T<200 K and minority component concentrations NGe=2(1010(2(1020cm-3 scattering on isovalent impurity adds to the existing scattering mechanisms.
As it is known, two interband electron junctions with absorption or emission of phonons are possible in silicon: g–junctions between the disposed along one axis valleys (of [100] type) and f - junctions between the valleys on interperpendicular axes. The application of strong uniaxial elastic deformations (P || [100]) makes it possible to obtain two-valley conduction band.
The values of electron mobility obtained at uniaxial strain [100] || P=9000 kg/cm2 for n-silicon crystals with different IIGe concentrations at temperature range 77(350 K fall with sufficient accuracy on a straight line on coordinates lg (()=lg (T) with a slope m=1.6. It is illustrated by dependence 4 in Fig.1. A considerable change of the slope of this dependence from 2.3 to 1.6 at T>100 K, absence of a kink as well as the approximation of index in to magnitude 1.5, which is characteristic of inter-value scattering on acoustic phonons, testify to the defining contribution of f – junctions into inter-valley scattering of electrons both in pure n-silicon and in solid solutions of Si at NGe(2(1020cm-3.
is the decrease of piezoresistance with the increase of IIGe concentration [5]. As tensoeffect is caused by anisotropy of the crystal, the presented results testify to the fact that doping the crystal with isovalent impurity changes the corresponding anisotropy parameters. For the parameter of anisotropy of mobility K we have [6]:
, (1)
At deformations, affording the complete migration of the carriers into energy minima, we may write down
, (2)
where n is concentration of carriers, (|| is current carriers mobility along the leading axis of ellipsoid.
As it is known, the parameter of anisotropy of mobility is:
, (3)
properties of silicon
), deforming the crystal lattice, changing its constant and thus influencing upon electrophysical properties of the crystal.
The paper presents the results of the investigation of electrophysical parameters and piezoresistanse effects in the crystals Si
Figure 1 shows the temperature dependences of electron mobility ( on the temperature in pure n-silicon (curve 1) and in n-silicon with different concentration of IIGe (dependences 2,3). Numbers of curves in Figure 1 correspond to the numbers of samples in Table 1.
Table 1
N (
((cm N(10-13
cm-3 NGe(10-19
cm-3 N0(10-17
cm-3 (300K
cm2/V(s (77K
cm2/V(s
1 130 3.1 - 7 1500 23000
2 81 5.1 2 6 1500 21000
3 65 6.2 4 6 1500 19500
4 50 9 7 6.5 1450 18500
5 98 4 20 6 1480 16400
Detailed experimental and theoretical investigations of electron mobility in n-silicon [2] showed that in the region of mainly phonon scattering it is determined both by in-valley and inter-valley scattering. Theoretical calculations, performed with account of scattering on long wave acoustic phonons and inter-valley pulse scattering at interaction of electrons and the phonons of corresponding averaged temperatures (1=190 K and (2=630 K, show the sufficiently detailed coincidence with the experiment in a wide temperature range 77(450 K. It is confirmed by plot 1, Fig.1, which also shows the contributions of different scattering mechanisms according to [2]. Plot 1 has a distinctive bending in 100K range. Such behavior of the curve and the deviation from the dotted line which determines the temperature dependency of electron mobility in pure n-silicon at scattering on acoustic oscillations of the lattice may be explained by the increasing contribution of inter-valley scattering at T(100 K. As it is seen in Fig.1, the slope of the dependency lg(()=lg(T) changes from 1.5 to 2.3. The change of power exponent in dependency ((T-m in the region of phonon scattering for n-silicon is revealed in paper [3], in which the authors assume that the abrupt decrease of ( at NGe(1020cm-3 testifies to the change of phonon spectrum and to the elastic stress relaxation via formation of modular structure of crystals. As it is seen in Fig. 1, the identity of all the curves slopes in practically important temperature range of 220(450K with the major contribution of inter-valley scattering testifies to the principal role of inter-valley scattering.
The decrease of electron mobility at temperatures T<200 K is a characteristic peculiarity of dependences lg(()=lg(T) for crystals Si
As it is known, two interband electron junctions with absorption or emission of phonons are possible in silicon: g–junctions between the disposed along one axis valleys (of [100] type) and f - junctions between the valleys on interperpendicular axes. The application of strong uniaxial elastic deformations (P || [100]) makes it possible to obtain two-valley conduction band.
The values of electron mobility obtained at uniaxial strain [100] || P=9000 kg/cm2 for n-silicon crystals with different IIGe concentrations at temperature range 77(350 K fall with sufficient accuracy on a straight line on coordinates lg (()=lg (T) with a slope m=1.6. It is illustrated by dependence 4 in Fig.1. A considerable change of the slope of this dependence from 2.3 to 1.6 at T>100 K, absence of a kink as well as the approximation of index in to magnitude 1.5, which is characteristic of inter-value scattering on acoustic phonons, testify to the defining contribution of f – junctions into inter-valley scattering of electrons both in pure n-silicon and in solid solutions of Si
is the decrease of piezoresistance with the increase of IIGe concentration [5]. As tensoeffect is caused by anisotropy of the crystal, the presented results testify to the fact that doping the crystal with isovalent impurity changes the corresponding anisotropy parameters. For the parameter of anisotropy of mobility K we have [6]:
, (1)
At deformations, affording the complete migration of the carriers into energy minima, we may write down
, (2)
where n is concentration of carriers, (|| is current carriers mobility along the leading axis of ellipsoid.
As it is known, the parameter of anisotropy of mobility is:
, (3)
The online video editor trusted by teams to make professional video in
minutes
© Referats, Inc · All rights reserved 2021