Рух небесних сил під дією сил тяжіння, Детальна інформація

Рух небесних сил під дією сил тяжіння
Тип документу: Реферат
Сторінок: 2
Предмет: Фізика, Астрономія
Автор: фелікс
Розмір: 52
Скачувань: 1098
Реферат на тему:

РУХ НЕБЕСНИХ ТІЛ

ПІД ДІЄЮ СИЛ ТЯЖІННЯ

1. Космічні швидкості й форма орбіт. Виходячи із спостережень за рухом Місяця й аналізуючи відкриті Кеплером закони руху планет, І. Ньютон (1643— 1727) установив закон всесвітнього тяжіння. За цим законом, як ви вже знаєте з курсу фізики, всі тіла у Всесвіті притягуються одне до одного із силою, прямо пропорційною добутку їхніх мас і обернено пропорційною квадратові відстані між ними:



тут m1 і m2 — маси двох тіл, r — відстань між ними, а G — коефіцієнт пропорційності, який називають гравітаційною сталою. Його числове значення залежить від одиниць, у яких виражені сила, маса й відстань. Закон всесвітнього тяжіння пояснює рух планет і комет навколо Сонця, рух супутників навколо плане: подвійних і кратних зір навколо їх спільного центра мас.

Ньютон довів, що піл дією взаємного тяжіння тіла можуть рухатися одне відносно одного по еліпсу (зокрема, по колу), по параболі й гіперболі. Він установив, що вид орбіти, яку описує тіло, залежить від його швидкості в даному місці орбіти (мал. 1).

При певній швидкості тіло описує коло біля центра тяжіння. Таку швидкість називають першою космічною або коловою швидкістю; її надають тілам, що запускаються як штучні супутники Землі по колових орбітах. (Виведення формули для обчислення першої космічної швидкості відоме з курсу фізики.) Перша космічна швидкість поблизу поверхні Землі становить близько 8 км/с (7,9 км/с).

раз більшої від колової (11,2 км/с), яка називається другою космічною або параболічною швидкістю, то тіло назавжди відійде від Землі й може стати супутником Сонця. У цьому разі тіло рухатиметься по параболі відносно Землі. При ще більшій швидкості відносно Землі воно полетить по гіперболі. Рухаючись по параболі або гіперболі, тіло лише один раз обходить Сонце і назавжди віддаляється від нього.

км/с = 42 км/с. При такій швидкості відносно Сонпя тіло з орбіти Землі покине Сонячну систему.

2. Збурення в русі планет. Закони Кегілера точно справджуються тільки тоді, коли розглядається рух двох ізольованих тіл під впливом взаємного притягання. У Сонячній системі планет багато, усі вони не тільки притягаються Сонцем, а й притягують одна одну, тому їхні рухи не точно підпорядковуються законам Кеплера.

Мал. 1. Залежність форми орбіти

від початкової швидкості об’єкта

Відхилення від руху, що відбувався б строго за законами Кеплера, називаються збуреннями. У Сонячній системі збурення невеликі, бо притягання кожної планети Сонцем значно сильніше від притягання інших планет.

Найбільші збурення в Сонячній системі спричиняє планета Юпітер, яка приблизно в 300 раз масивніша за Землю. Юпітер дуже впливає на рух астероїдів і комет, коли вони близько підходять до нього. Зокрема, якщо напрями прискорень комети, спричинені притяганням Юпітера і Сонця, збігаються, то комета може розвинути настільки велику швидкість, що, рухаючись по гіперболі, назавжди вийде із Сонячної системи. Траплялися випадки, коли притягання Юпітера стримувало комету, ексцентриситет її, орбіти зменшувався і різко зменшувався період обертання.

Обчислюючи видиме положення планет, доводиться враховувати збурення. Нині робити такі розрахунки допомагають швидкодіючі електронно-обчислювальні машини. При запуску штучних небесних тіл і розрахунку їхніх траєкторій користуються теорією руху небесних тіл, зокрема теорією збурень.

Можливість запускати автоматичні міжпланетні станції по бажаних, заздалегідь розрахованих траєкторіях, доводити їх до цілі з урахуванням збурень у русі — усе це яскраві приклади пізнаванності законів природи. Небо, яке за уявленнями віруючих є оселею богів, стало ареною людської діяльності так само, як і Земля. Релігія завжди протиставляла Землю і небо й проголошувала небо недосяжним. А тепер серед планет рухаються штучні небесні тіла, створені людиною і керовані нею по радіо з великих відстаней.

3. Відкриття Нептуна. Одним з яскравих прикладів досягнень науки, одним із свідчень необмеженої пізнаванності природи було відкриття планети Нептун за допомогою обчислень — «на кінчику пера».

Уран — планета, яку відкрив В. Гершель наприкінці XVIII ст. Вона йде за Сатурном, що багато століть вважався найвіддаленішою з планет. Уран важко побачити неозброєним оком. До 40-х років XIX ст. точні спостереження показали, що він ледь помітно відхиляється від того шляху, яким мав би рухатись з урахуванням збурень з боку усіх відомих планет. Таким чином, теорія руху небесних тіл, настільки строга й точна, зазнала випробування.

Левер'є (у Франції) та Адамс (в Англії) висловили припущення, що, оскільки збурення з боку відомих планет не пояснюють відхилення в русі Урана, значить, на нього діє притягання ще невідомого тіла. Вони майже одночасно обчислили, де за Ураном має бути невідоме тіло, яке своїм притяганням спричиняє ці відхилення. Учені обчислили орбіту невідомої планети, її масу і вказали місце на небі, де в даний час вона мала знаходитись. Цю планету й було знайдено в телескоп у зазначеному місці в 1846 р. її назвали Нептуном. Планету не видно неозброєним оком. Отже, ця суперечність між теорією і практикою, яка, здавалось, підривала авторитет матеріалістичної науки, привела до тріумфу.

\x0152

\x017D

\x00B4



\x00B8

\x00BA

Ae

AE

E

I

The online video editor trusted by teams to make professional video in minutes