Ростові фактори та їх клінічне застосування, Детальна інформація

Ростові фактори та їх клінічне застосування
Тип документу: Реферат
Сторінок: 6
Предмет: Анатомія
Автор:
Розмір: 38.2
Скачувань: 1627
Стимуляторами гранулоцитопоеза є кілька факторів росту. Їх дія на мієлопоез тим інтенсивніша і багатогранніша, чим на обмеженіший пул клітин діє той чи інший фактор. Так, ІL-3, що діє на клітини-попередники мієлопоеза, забезпечує їх проліферацію, в той час, як GM-CSF і G-CSF – не тільки проліферацію, але й дозрівання попередників до зрілих гранулоцитів. При цьому G-CSF, діючи лише на попередників гранулоцитопоеза, збільшує число лейкоцитів у крові значно швидше, ніж GM-CSF, оскільки зменшує час дозрівання від попередників до зрілих гранулоцитів із 7 до 1,5 дня і значно активніше, ніж GM-CSF стимулює вихід зрілих гранулоцитів із гранулоцитарного пула кісткового мозку до периферійної крові. Було показано, що видалення гена GM-CSF у миші призводить до зменшення кількості гранулоцитів у крові тільки на 1/10, а внаслідок видалення гена G-CSF кількість гранулоцитів зменшується на 80% [цит. по 2].



2.Використання факторів росту при хворобах системи крові

2.1. Гранулоцитарний колонієстимулюючий фактор. G-CSF було виявлено при вивчені регуляції гемопоезу в дослідах на мишах у 1983 році. Його дію на гемопоетичні клітини вивчали D.Metcalf і N.Nicola. G-CSF людини було вперше виділено в 1985 році із середовища, в якому культивувались клітини карциноми сечового міхура людини. Ген, що кодує утворення G-CSF розміщений на довгому плечі хромосоми 17, яка зазнає перебудови при ряді гематологічних захворювань [цит. по 2].

При вивченні біологічних властивостей G-CSF виявлено, що він стимулює утворення гранулоцитарних колоній in vitro, синергійно з іншими ростовими факторами (ІL-3, GM-CSF, M-CSF) стимулює утворення мегакаріоцитарних, гранулоцитарно-макрофагальних і змішаних колоній in vitro, збільшує виживання і проліферацію незрілих попередників гемопоетичних клітин, стимулює проліферацію комітованих попередників гранулоцитів, а також промієлоцитів і мієлоцитів, вкорочує час розвитку нейтрофільних гранулоцитів від їх попередників, збільшує число попередників гемопоезу в крові, антитілозалежну цитотоксичність, міграцію лейкоцитів і хемотаксис [цит. по 2].

Таким чином, G-CSF діє не лише на попередників гранулоцитопоеза, забезпечуючи їх проліферацію, диференціювання, дозрівання і вихід зрілих гранулоцитів у периферійну кров, але і на зрілі гранулоцити, зумовлюючи збільшення тривалості їх життя, прискорення і збільшення міграцій гранулоцитів до місця запалення, підвищення їх здатності до хемотаксису по відношенню до бактерій і фагоцитозу.

Продуцентами G-CSF є моноцити, фібробласти і ендотеліальні клітини. G-CSF утворюється головним чином у кістковому мозку, але в пренатальному і ранньому натальному періоді – також в печінці і селезінці.

Дія G-CSF відбувається шляхом його зв’язування із строго специфічними рецепторами, які є на гранулоцитарних клітинах всіх стадій дозрівання, але відсутні на клітинах еритроїдного і мегакаріоцитарного рядів. Рецептори до G-CSF є протеїнами, і складаються з одного поліпептидного ланцюга з молекулярною масою 100-150 кДа, що містить у своєму складі в людини 812 або 759 амінокислотних залишків. Є рецептори помірної і високої аффінності. У фізіологічних умовах дія G-CSF відбувається шляхом зв’язування з високоаффінними рецепторами, при збільшенні рівня G-CSF в крові і тканинах відбувається його зв’язування з рецепторами помірної аффінності. На клітинах гранулоцитарного ряду є від 50 до 500 рецепторів на клітину [цит. по 2].

Дія G-CSF відбувається дуже швидко: протягом кількох хвилин після ін’єкції відбувається спочатку зменшення кількості нейтрофілів у периферійній крові, яке пояснюється посиленням адгезії в судинах, що призводить до виходу гранулоцитів із циркуляції, а потім – швидке збільшення кількості нейтрофілів, і протягом 24 годин спостерігається поява незрілих попередників гранулоцитопоеза в периферійній крові.

Досліди на мишах і мавпах продемонстрували, що G-CSF в змозі індукувати нейтрофілію в нормальних тварин і підвищувати відновлення нейтрофілів після використання 5-флорурацилу або загального опромінення організму. Нормальних рівнів нейтрофілів у мавп було досягнуто у межах 10 днів від початку лікування після застосування доз циклофосфаміду, які індукували аплазію. Коли G-CSF починали вводити перед хіміотерапією, рівень нейтропенії був глибшим, проте відновлення не порушувалось. Це вказує на те, що клітини-попередники спонукаються до вступу в клітинний цикл G-CSF, тому стають чутливими до цитотоксичних препаратів [24].

Досліди з Н3-тимідином проводилися для визначення кінетики гранулопоезу людини та мишей після призначення G-CSF. Було показано, що гранулопоез підвищувався на всіх рівнях, а найбільше на рівні мієлобластів. Також очевидним було прискорення дозрівання і виходу клітин, але не спостерігалося ніяких змін у тривалості циркуляції нейтрофілів у кров’яному руслі [цит. по 10].

Можливим є те, що функції нейтрофілів посилюються у пацієнтів, які отримують G-CSF. У них підвищується здатність до хемотаксису, що також забезпечує захист проти різних патогенних факторів, включаючи бактерії та гриби [7].

Перша частина клінічних досліджень продемонструвала, що G-CSF є ефективним у підвищенні числа нейтрофілів при тривалому внутрішньовенному введенні, короткочасному внутрішньовенному введенні та при введенні під шкіру. Навідміну від GM-CSF, вживання G-CSF не супроводжується побічними ефектами. Трапляються скарги на біль у кістках у 20% пацієнтів, підвищення рівня лактатдегідрогенази та сечовини, а також збільшення селезінки у дітей із хронічною нейтропенією. Ці проблеми, як правило, незначні, а біль у кістках легко знімається парацетамолом. Було зафіксовано лише один випадок гострого дерматозу у пацієнта хворого на лейкемію [цит. по 10].

Поряд із дослідженнями ролі та механізмів впливу G-CSF і GM-CSF, необхідними є вивчення патофізіології нейтропенії та сепсису, спричиненого нейтропенією. Було невідомо чи ці проблеми були спричинені неадекватною кількістю нейтрофілів, чи нейтрофіли цих пацієнтів були якісно недосконалими. Схоже на те, що інфекції в таких пацієнтів спричинені комбінацією цих факторів. Окрім того, у пацієнтів з нейтропенією часто розвивається гарячка без ознак джерел інфекції і мікробіологічних підтверджень інфекції. Без сумнівів, що пацієнти з нейтропенією мають підвищений ризик померти від інфекції, і чим вищі дози хіміотерапії та довші її курси, чи застосування комбінації хіміотерапії та радіотерапії, тим вищий ризик [21].

Проблема нейтропенії, що настає після хіміотерапії ракових захворювань розглядалася багатьма вченими. У багатьох клінічних випадках застосування G-CSF спричиняло значне скорочення тривалості нейтропенії. Було відмічено покращення перенесення пацієнтами інфекцій, зменшення кількості грибкових уражень, скорочення періоду перебування пацієнтів у лікарні і можливість призначення вищих доз хіміотерапії [цит. по 10].

Щоб довести, що зменшення періоду нейтропенії спричинено використанням G-CSF, важливо було провести плацебо контрольовані рандомізовані дослідження. Це було зроблено Crawford et al, використовуючи циклофосфамід і доксорубіцин при терапії раку легень. Ці цитотоксини було вибрано через те що вони широко використовуються для лікування різних форм раку. Рак легенів було обрано як модель раку, що піддається хіміотерапії, і лікування якого ускладнюється інфекціями. Досліджувальні ліки давали при кожному циклі хіміотерапії. Цих пацієнтів пізніше лікували введенням G-CSF. Було відмічено 50% зменшення частоти виникнення гострої нейтропенії у пацієнтів, які отримували G-CSF, внаслідок чого зникала необхідність госпіталізації та використання антибіотиків. Пацієнти, які отримували плацебо, після чого почали отримувати G-CSF, після зникнення нейтропенії були в змозі отримувати повну дозу хіміотерапії з підтримкою G-CSF [9].

При синдромі Костмана введення G-CSF спричиняє збільшення числа нейтрофілів у периферійній крові. При циклічних нейтропеніях тривалість циклу може бути вкорочена, і спостерігається збільшення кількості BFU-E (вибух формуючих одиниць еритроцитів) і GM-CFC (гранулоцит-макрофагальних колонієутворюючих клітин). У пацієнтів із глікогенозом типу Ib G-CSF різко підвищує кількість нейтрофілів з подальшим покращенням перенесення інфекцій. Тривала терапія із застосуванням G-CSF забезпечує захист пацієнтів від інфекцій. Єдиним побічним ефектом була спленомегалія. Це можна вважати рідкісним випадком. Спленомегалія виникає лише у дітей із гострою хронічною нейтропенією. Відзначено також підвищення кількості нейтрофілів і відступ інфекції у цих пацієнтів завдяки G-CSF [25].

Мієлодиспластні синдроми є гетерогенною групою захворювань, деякі з яких характеризуються цитогенетичними порушеннями, зумовлених дефектом довгого плеча 5 хромосоми, де знайдено ген, що кодує GM-CSF. Пацієнти знаходяться у ризику померти від кровотеч, інфекцій чи виникнення гострої лейкемії та анемії. У цьому випадку кількість нейтрофілів може бути збільшена завдяки введенню G-CSF, із збільшенням GM-CFC у кістковому мозку без збільшення клональної проліферації. Цитогенетичні порушення можуть зникнути під час лікування (можливо завдяки селективній стимуляції нормальних клонів гемопоетичних клітин), але знову з'являються після припинення введення G-CSF. При лікуванні 18 пацієнтів за допомогою G-CSF, було відзначено збільшення показників нейтрофілів у 16 з них, проте вони повернулися до початкового стану після припинення терапії. Зменшений ризик інфекції було відмічено коли нейтрофілів було > 1.5x109/літр. Не зважвючи на це, у трьох пацієнтів під час терапії мієлоїдна лейкемія прогресувала. Було відмічено, що G-CSF спричиняє збільшення кількості нейтрофілів у дітей, хворих на апластичну анемію, під час терапії, але ці показники поверталися до початкового рівня після припинення введення G-CSF [цит. по 10].

G-CSF i GM-CSF можуть збільшити кількість нейтрофілів у пацієнтів із мієлодисплазією чи апластичною анемією, але це ще повністю не доведено. Може бути, що G-CSF є більш корисним у лікуванні таких пацієнтів під час гострих інфекційних захворювань. Для хворих на мієлодисплазію ризик стимуляції її трансформації у мієлоїдну лейкемію до кінця не визначено.

G-CSF використовувався для лікування лімфобластної та мієлобластної лейкемії. Знову, було відмічено збільшення кількості нейтрофілів, та зменшення ризику інфекції для обох типів лейкемій. Була тенденція до збільшення швидкості ремісії у групі, яка отримувала G-CSF, але це не стало статистичним показником пізніше. Не було жодної різниці між групами щодо відновлення тромбоцитів, виникненням рецидивів чи кількості днів із гарячкою. Не було відновлення росту мієлобластів у групи, що отримувала G-CSF, що свідчить про те, що його безпечно використовувати в цій групі протягом часу проведення хіміотерапії. Ясно, що немає жодних протипоказів щодо використання G-CSF при гострій лімфобластній лейкемії, і йому випадає головна роль у лікуванні таких пацієнтів [21].

G-CSF використовується при аутотрансплантації кісткового мозку, що проводиться для лікування різних немієлоїдних злоякісних новоутворень. Застосування G-CSF спричиняє значне скорочення періоду нейтропенії, і пряму вигоду для пацієнтів, пов’язану з меншим використанням антибіотиків, зменшенням кількості днів із лихоманкою, періоду парентерального годування та періоду перебування у лікарні.

Важливе місце зараз займає G-CSF при зборі стовбурових клітин периферійної крові (СКПК) для їх трансплантації. Ще декілька років тому було показано, що трансплантація СКПК сприяє швидшому відновленню гемопоезу в порівнянні з трансплантацією кісткового мозку. Здатність G-CSF збільшувати вихід стовбурових клітин у кров розширила можливості інтенсифікації терапії з наступним відновленням гемопоезу за допомогою СКПК. Порівняльні досліди показали, що G-CSF сприяє значно активнішому виходу стовбурових клітин у кров, ніж GM-CSF [цит. по 2].

Для збору СКПК з метою їх наступної трансплантації звичайно використовується доза 10 мкг/кг в день, оскільки при цій дозі досягається найбільший вихід стовбурових клітин у кров. Вводять препарат підшкірно [цит. по 2].

2.2. Гранулоцитарно-макрофагальний колонієстимулюючий фактор. Досліди іn vitro показали, що GM-CSF діє як на дозрілі, так і на недозрілі клітини гранулоцитарно-макрофагального ряду, спричинюючи проліферацію клітин-попередників і диференціацію більш зрілих клітин. GM-CSF може активувати багато функцій фагоцитуючих клітин, включаючи хемотаксис, адгезію, фагоцитоз, втрату грануляції, продукцію супероксидних аніонів, антитілозалежну клітинну цитотоксичність та антипаразитарну активність. У досліді на мишах, GM-CSF, що вводився у черевну порожнину, спричиняв ефект підвищення гранулопоезу з акумуляцією дозрілих нейтрофілів і моноцитів, що спостерігалась у печінці та селезінці. GM-CSF людини, який вводили людиноподібним мавпам, спричиняв помітний лейкоцитоз, що зберігався до 28 днів, який давав (без шкідливих ефектів) збільшення кількості нейтрофілів, еозинофілів, моноцитів і лімфоцитів. Розвивався також незначний ретикулоцитоз. GM-CSF спричиняє однаковий ефект коли його вводять мавпам внутрішньовенозно та підшкірно, проте підшкірний шлях ефективніше викликає лейкоцитоз [13].

GM-CSF є ефективним при введенні нормальним тваринам, а також тваринам, до яких застосовується мієлотоксичне лікування. У мишей, яким давали рекомбінантний GM-CSF шсля мелфалану, спостерігалося вкорочення періоду нейтропенії та зниження загибелі мишей від нейтропенії. Спустошення пулу клітин-попередників гранулоцитів-макрофагів у кістковому мозку і селезінці настає раніше у групи, яка отримує GM-CSF, проте це ще повністю не доведено [14].

Здатність GM-CSF посилювати пpоліферіцію і диференціацію гранулоцитів та макрофагів дає змогу використовувати його в терапії мієлоїдних лейкемій і мієлодиспластних синдромів. Його вплив на функцію нейтрофілів підвищує можливість його використання для збільшення числа нейтрофілів та стимуляції їх функцій у хворих з нейтропенією, а також, можливо, моноцито-мaкрофагальні бактерицидні та протипухлинні властивості. Інші можливі шляхи його використання, що випливають із доклінічних досліджень, базуються на ролі GM-CSF у додатковій терапії інфекційних захворювань, а також його використання у комбінації з іншими цитокінінами для досягнення клінічних відповідей у певних ситуаціях. Наприклад, при апластичних анеміях, пересадках кісткового мозку і для лікування пацієнтів із синдромом набутого імунодифіциту (СНІД) [10].

Ранні дослідження властивостей GM-CSF були утруднені тим, що цей ростовий фактор має видову специфічність. GM-CSF призначався хворим із неоперабельними або метастазними саркомами, у яких був здоровий кістковий мозок. У цих пацієнтів GM-CSF підвищував целюлярність кісткового мозку, спричиняв преферійну нейтрофілію та еозинофілію. Також спостерігалось підвищення кількості клітин-попередників у крові [6].

GM-CSF рідко виявляється в периферійній крові. Проте його було виявлено у хворих із гострими грибковими інфекціями. Схоже на те, що GM-CSF не відповідає за постійний гомеостаз, але може відігравати значну роль у стресових ситуаціях та при запаленнях.

Перша стадія досліджень довела, що результатом введення GM-CSF різними способами є лейкоцитоз, коли переважають нейтрофіли та еозинофіли, а рівень моноцитів підвищений незначно. Підшкірне введення є ефективнішим, ніж внутрішньовенне. На ретикулоцити він не має жодного впливу. Вплив на тромбоцити незначний та мінливий. Мінімум тромбоцитів спостерігається в перші 5 днів лікування у більшості пацієнтів, а максимум досягається в наступні 5 днів [цит. по 10].

Спостерігалася активація моноцитів за допомогою GM-CSF з виявленням ними антипухлинних властивостей in vitro. In vivo було виявлено лише одну часткову відповідь проти солідної пухлини. Це була ліпосаркома, яку до того довго лікували. Пацієнт мав 50% зменшення об’єму пухлини після п’яти циклів GM-CSF. Більше протипухлинних ефектів відмічено не було, хоча вичерпних досліджень у цьому напрямку не проводилось [цит. по 10].

The online video editor trusted by teams to make professional video in minutes