Розрахунок показників надійності інтегральних схем, Детальна інформація

Розрахунок показників надійності інтегральних схем
Тип документу: Курсова
Сторінок: 7
Предмет: Фізика, Астрономія
Автор: Лёха
Розмір: 223.2
Скачувань: 1670
Рисунок 1.3 Структура зарядових станів у шарі окисла на кремнії:

1 - границя розділу кремній-двоокис кремнію; 2 - поверхня окисла; ± - електрони і дірки; \x25A1 - пастки електронів і дірок; R+X\x203E - позитивні і негативні іони домішок, забруднень; \x25CB - іонізовані атоми надлишкового кремнію в окислі.

Наявність зарядів на поверхні розділу системи Si-SiО2 обумовлено тим, що кристалічні ґрати кремнію в поверхні розділу обриваються і поверхневі атоми мають ненасичені електронні зв'язки, що утворять донорні та акцепторні рівні в забороненій зоні кремнію. Концентрація таких рівнів на вільній поверхні кремнію лежить у межах 1015 см-2. При вирощуванні на поверхні кремнію плівки SiО2 Щільність поверхневих станів зменшується і досягає 1011...1012 см-2. Зі зміною положення рівня Фермі заряд, що локалізується на поверхневих енергетичних рівнях, дуже швидко змінюється по величині. Тому ці поверхневі стани і заряди, що локалізуються на них, називають швидкими.

У самої границі двоокису кремнію з кремнієм на відстані порядку 20 нм у глиб плівки двоокису кремнію розташовується фіксований заряд із щільністю порядку 1011...1012 см-2. Природа цього заряду зв'язана з механізмом утворення окисної плівки на поверхні монокристалічного кремнію. У процесі окислювання кремнію на його поверхні утворяться моношари SiО2 і надалі реакція окислювання кремнію йде під цими шарами. При цьому для вступу в реакцію атоми кисню проникають через окісні шари, що утворилися. Тому атоми кремнію виявляються в надлишку в приповерхніх шарах SiО2. Вони, маючи незаповнені зв'язки, і створюють додатковий фіксований заряд, що не залежить від зовнішніх електричних полів і температури. Тому цей вид зарядів зветься повільним.

Розглянуті вище структурні дефекти в окісній плівці можуть бути місцями локалізації й одночасно джерелами неконтрольованих зарядів у ній. Основні джерела таких зарядів: кисневі вакансії в структурі SО2, іони водню, іони металів і особливо високорухливі іони натрію (які створюють переважно позитивний заряд у шарі двоокису кремнію). Усі ці заряди під дією електричних полів можуть переміщатися в шарі двоокису кремнію в напрямку до границі розділу з кремнієм і назад. Концентрація зарядів може істотно мінятися в залежності від обробки структур у різних середовищах при виготовленні. Значні зміни в місці розташування зарядів і їхньої концентрації відбуваються при експлуатації приладів (у тому числі, в умовах радіаційних впливів).

Утворення поверхневих зарядів зв'язано з різними забрудненнями, адсорбованими на поверхні шару двоокису кремнію. Їхньою особливістю є висока рухливість, що дозволяє зарядам переміщатися на великі відстані по поверхні окисла під дією прикладеної напруги. При підвищенні температури активних областей приладу і навколишнього середовища в результаті десорбції забруднень концентрація поверхневих зарядів може змінюватися в значних межах.

Усі розглянуті вище заряди, взаємодіючи з зарядами активних областей напівпровідникових структур, спотворюють конфігурацію р-n переходів, викликають утворення інверсійних шарів, що в кінцевому рахунку приводить до нестабільності електричних параметрів приладів, до поступових і раптових відмов.

1.3 Відмови внаслідок електричного пробою окисла та p-n переходу.

hc

hc

hc

hc

hc

gdc

`„\x00D0a$gdc

gdc

"

$

t

gdc

gdc

\x6000\x5384\x6103\x0324\x6467\x2F83\x0088\x0300\x0324\x8411\x0353\x6412\x0168\xA413









=дзатворного окисла досягла 20 нм і менше. При подальшому масштабуванні приладів із довжиною каналу до 0,25 нм товщина підзатворного окисла, очевидно, досягне 5 нм, що приведе до різкого зростання електричного поля в діелектрику до рівня, при якому наступить внутрішній пробій. Для окісних тонких плівок товщиною близько 10 нм гранична напруга пробою складає 8...10 мВ. Найбільш розповсюдженою моделлю внутрішнього пробою є модель ударної іонізації — рекомбінації. Суть її полягає в наступному.

Під дією електричного поля вільний електрон при прямуванні в окислі достатньої товщини на довжині вільного пробігу встигає одержати енергію для ударної іонізації атомів матриці і створення електронно-діркових пар. Внаслідок більшої рухливості електрони випереджають у русі дірки, залишаючи позаду хмару позитивно заряджених носіїв заряду, що створює додаткове прискорююче поле на шляху наступної порції електронів. Таким чином, у системі ударної іонізації з'являється позитивний зворотний зв'язок, що сприяє лавинному розмноженню носіїв і настанню стану пробою. Велика імовірність виникнення такої самої ситуації в системах багатошарової металізації. Товщина шарів ізоляції в цих системах істотно більше, ніж товщина підзатворного діелектрика. Однак якість цих шарів багато нижче головним чином через нерівності поверхні металевих і полікремнієвих доріжок. Тому в місцях звужень діелектричних шарів і на вістрях виступів можуть виникати підвищені напруженості електричного поля, що приводять до пробою.

Наступним фізичним механізмом, викликаним ростом електричного поля в тонких електричних шарах і приладах при масштабуванні, є механізм інжекції гарячих електронів із кремнію в окісний шар. Гарячі електрони - це высокоенергетичні носії, що утворяться при лавинному прибої p-n переходу чи в області підвищеного електричного поля поблизу стоку МДН-транзистора з коротким каналом.

Інжекція і захоплення гарячих носіїв відповідальні за деградацію коефіцієнта підсилення біполярних транзисторів. Для МДН-транзисторів при масштабуванні їхніх геометричних розмірів до 1 мкм і менш захоплення гарячих носіїв є визначальним чинником, що має фундаментальне значення в справі забезпечення стабільності роботи приладів.

The online video editor trusted by teams to make professional video in minutes