Розвиток Енергетики В Україні, Детальна інформація

Розвиток Енергетики В Україні
Тип документу: Реферат
Сторінок: 5
Предмет: Фізика, Астрономія
Автор: Андрій
Розмір: 30.5
Скачувань: 11959
Конкурентоспроможність. При економічній оцінці будь-якої технології енерговиробництва необхідно враховувати повні зовнішні та соціальні витрати, зокрема екологічні ефекти для паливного циклу, вплив на суспільство (в т. ч. на зайнятість, здоров’я тощо) у локальному, регіональному та глобальному вимірах. Широкомасштабний проект ExtrnE, здійснений Європейською комісією спільно з Департаментом Енергії США, вивчав зовнішні фактори для повних енергетичних циклів (див. таблицю на наступній сторінці).

Експлуатаційні та фінансові витрати для різних технологій залежать у різних країнах від місцевих умов та прийнятих облікових ставок. Зовнішні витрати в ядерній енергетиці покривають потенційні витрати у випадку великих аварій, при тому імовірність таких аварій не є великою.

Якщо враховувати лише експлуатаційні та фінансові витрати, то найдешевшими є ядерна енергія та природний газ. Якщо брати до уваги ще й зовнішні витрати, то найпривабливішою стає ядерна енергія.

Оцінки зовнішньої вартості емісії СО2 (ефект кліматичних змін) не є усталеними й варіюються від 10 до 25 євро на тонну вугілля. Якщо прийняти цю вартість як 15 євро за тонну, то це дасть внесок у зовнішню вартість для вугілля 0,5 цента євро за кВт SYMBOL 180 \f "Symbol" \s 9 ґ г, а для природного газу – 0,3 цента. Якщо ж брати більш високу вартість, то ці числа дуже помітно збільшаться. Це робить ядерну енергію найбільш економічно вигідною альтернативою у випадку врахування всіх витрат.

Повна вартість виробництва електроенергії у центах євро за кВт SYMBOL 180 \f "Symbol" \s 9 ґ г

Технологія Зовнішні витрати Фінансові витрати Загалом

Вугілля 2,0 5,0 7,0

Нафта 1,6 4,5 6,0

Газ 0,36 3,5 3,9

Вітер 0,22 6,0 6,2

Гідроенергія 0,22 4,5 4,7

Ядерна енергія 0,04 3,5 3,5



Трохи теорії

Уран — дуже поширений хімічний елемент на Землі. Його вміст у земній корі становить у середньому 4·10-6 г/г породи, у морській воді — 1,3·10-6 г/л. Природний уран складається з трьох ізотопів: 233U, 235U та 238U. При цьому вміст ізотопів дуже різний: на 140 частин 238U припадає одна частина 235U і незначна кількість 233U. При опроміненні нейтронами ізотопи виявляють себе по-різному. Так, при поглинанні нейтрону ядро 235U переходить у нестабільний стан і розпадається на два осколки з виділенням енергії та випусканням т. зв. вторинних нейтронів. Якщо нейтрон знову потрапляє в ядро 235U, то відбувається ще одне ділення. Якщо нейтрон потрапляє в ядро 238U, то відбувається інша реакція: новоутворене ядро 239U випускає (-частку та перетворюється на нептуній (239Np), який за наступного (-розпаду перетворюється на плутоній (239Pu). Плутоній є ядерним паливом і здатний ділитися та перетворюватися під дією нейтронів на важчі ізотопи:

30% 240Pu + n > 241Pu

239Pu + n

70% осколки (продукти ділення)

Так само як і 235U, 233U теж є матеріалом, який ділиться і розпадається при поглиненні нейтрону. Ресурси 233U у природі вельми малі, отож його напрацьовують у ядерних реакторах з торія (Th), вміст якого у земній корі — близько 12·10-6 г/г породи —значно перевищує вміст урану. Щоправда, в океанічній воді торія міститься лише близько (1-2)·10-9 г/л — приблизно в тисячу разів менше, ніж урану. Однак у процесі вироблення 233U утворюються домішки баластних ізотопів 232U та 234U, які не діляться. Ізотоп 232U має період піврозпаду 72 роки й утворюється за кількома ядерними реакціями при опроміненні нейтронами природного торія; його присутність погіршує радіаційну обстановку, бо його продукти є (-, (- і (- активними. Тому у порівнянні з 235U паливо на основі 233U вимагає акуратнішого поводження.

Щоб проникнути в ядро 238U і викликати його перетворення на 239U, потрібні швидкі, а щоб викликати ділення 235U — повільні нейтрони. Реактори, в яких основну роботу здійснюють швидкі нейтрони, називаються швидкими, а реактори, котрі працюють на повільних нейтронах, — тепловими. У якості сповільнювача нейтронів у теплових реакторах використовуються графіт, вода або важка вода. Звідси й назви — уран-графітові, легководні, важководні реактори.

У процесі роботи в паливі утворюються довгоживучі радіонукліди: америцій (Am), кюрій (Cm), нептуній (Np), технецій-99 (99Tc) та йод-129 (129I). На сьогодні розроблені і випробувані технології, завдяки яким довгоживучі радіонукліди (з періодом піврозпаду в десятки й сотні тисяч років) вилучаються з відпрацьованого ядерного палива і піддаються трансмутації у швидких реакторах. У такому випадку замкнений ядерно-паливний цикл стає екологічно прийнятним, бо вимагає контролю за збереженням вилучених високоактивних відходів (у тому числі стронція-90 (90Sr) і цезія-137 (137Cs)) протягом лише 100—200 років. Після падіння активності ці відходи заховуються з дотриманням принципу радіаційно-міграційної еквівалентності (згідно з цим принципом, разом з відходами у земних глибинах ховається така ж кількість радіонуклідів, як і в добутому природному урані).

Негативні сторони ядерної енергетики

Однак у сучасної атомної енергетики є й істотні недоліки. Вона дає значно менше відходів, ніж інші енергогенеруючі технології (а потім ще й ізолює їх), але відходи все ж такі існують. Безпека поховання великої кількості радіоактивних відходів (РАВ) на десятки і сотні тисяч років викликає сумнів через надійність таких довготривалих фізично-геологічних прогнозів. Невідомо також, яку роль ці штучні поклади небезпечних речовин відіграють у життєдіяльницьких процесах наступних земних цивілізацій...

Більшість АЕС у світі використовують теплові легководні реактори (LWR). До цього класу належать усі нині діючі українські енергоблоки. LWR вимагають збагаченого урану, що зумовлює залежність неядерних країн від постачальників ядерного палива. Тому деякі держави (зокрема Румунія) будують важководні реактори (HWR), де використовується паливо з природного (незбагаченого) урану. Однак глибина вигоряння палива у HWR у 4—6 разів менша, ніж у LWR, а це збільшує об’єми відпрацьованого (опроміненого) ядерного палива (ОЯП) та зумовлює відповідну потребу у місткіших сховищах. Далі: існуючі на сьогодні технології переробки ОЯП передбачають вилучення з нього плутонію, а створення власних збагачувальних комбінатів і потужностей для переробки ОЯП у неядерних країнах дає їм можливість напрацьовувати збройовий уран і плутоній на основі цілком легальних каналів атомної енергетики.

Ще одним недоліком LWR є те, що в якості палива в них використовується 235U, а його запасів у розвіданих на сьогодні родовищах вистачить лише на 50—100 років. Тому треба ширше запроваджувати в енергогенеруючі процеси 238U, запасів якого вистачить на кілька тисячоліть.

За всю історію атомної енергетики світу були дві аварії-катастрофи: Виндскейл (7 жовтня 1957 р.) і Чорнобиль (26 квітня 1986 р.). Першу з них фактично вдалося «зам’яти», друга ж завдала величезного удару по самій ідеї «мирного атома». Головним психологічним наслідком Чорнобиля стала масова радіофобія, коли все пов’язане з ядерною енергетикою почало сприйматися некритично, різко негативно. Доходило до «чорного» комізму. Так, через рік після чорнобильської аварії лікарі у Німеччині повідомляли про серйозні випадки фізичного виснаження людей, котрі харчувалися тільки консервами з датою виготовлення до 26 квітня 1986 р.

Атомна енергетика XXI століття

Щоб продуктивно розвиватися далі, атомна енергетика має відповідати цілій низці вимог, серед яких:

необмежене забезпечення людства паливними ресурсами шляхом ефективного використання природного урану, а надалі і торію;

унеможливлення важких аварій із радіаційними викидами (які тягнуть за собою евакуацію населення) за будь-яких відмов устаткування, помилок персоналу та зовнішніх впливів (таке унеможливлення має досягатися передусім за рахунок природної безпеки реакторів, яка, у свою чергу, має ґрунтуватися на грамотній експлуатації природних якостей та закономірностей паливних компонентів);

The online video editor trusted by teams to make professional video in minutes