Формули. Рiвносильнiсть формул. Тотожно iстиннi формули, Детальна інформація

Формули. Рiвносильнiсть формул. Тотожно iстиннi формули
Тип документу: Реферат
Сторінок: 2
Предмет: Логіка
Автор: Олексій
Розмір: 10.8
Скачувань: 1527
Реферат на тему:

Формули. Рiвносильнiсть формул. Тотожно iстиннi формули

Наведемо iндуктивне означення поняття формули логiки предикатiв (предикатної формули або просто формули ) на предметнiй областi M.

1. Усi предикати P(x1,x2,...,xn) на множинi M є формулами. Такi формули називають елементарними, або атомарними.

2. Якщо A i B - формули, то ((A), ((B), (A(B), (A(B), (A(B), (A~B) теж є формулами.

3. Якщо A - формула, а x - вiльна змiнна в A, то ((x(A)) i ((x(A)) теж формули.

4. Iнших формул, крiм утворених за правилами 1-3, немає.

Це означення дозволяє твердити, що усi формули алгебри висловлень є формулами логiки предикатiв, оскiльки висловлення - це нульмiснi предикати.

За допомогою наведеного означення неважко також переконатись, що вирази ((x((y(A(x,y))((B(x)(((z(C(x,z))))) i ((x((y(A(x,y)(B(x))(((y(C(x,y)))) є формулами логiки предикатiв, а вираз ((x(A(y)(((x(B(x))))) не є формулою, оскiльки у виразi (A(y)(((x(B(x)))), який є правильною формулою, змiнна x є зв'язаною, тобто не є вiльною змiнною i квантор (x до неї застосувати не можна.

Для зручностi можна запровадити такi умови скорочення кiлькостi дужок у формулах. По-перше, залишимо всi умови скорочення числа дужок, якi було прийнято в алгебрi висловлень, виходячи з прiоритету логiчних операцiй. По-друге, опускатимемо всi зовнiшнi дужки. Вважатимемо, що квантори мають бiльший прiоритет, нiж логiчнi операцiї. Опускатимемо також дужки, що позначають область дiї квантора, якщо остання є елементарною формулою. Нарештi, не писатимемо дужки мiж кванторами, що слiдують один за одним. При цьому виконання таких кванторних операцiй вiдбувається в порядку, зворотньому до їх написання (справа налiво).

Нехай F(x1,x2,...,xn) - деяка формула логiки предикатiв на множинi M. При логiчнiй (iстинностнiй) iнтерпретацiї формули F можливi такi три основнi ситуації.

1. Iснує набiр значень змiнних, для якого формула F перетворюється на iстинне висловлення. У цьому разi формула F називається виконуваною в областi M.

Якщо для F iснує область M, в якiй F є виконуваною, то формула F називається просто виконуваною.

2. Якщо формула F приймає значення 1 (тобто є виконуваною) для всiх наборiв значень з M, то вона називається тотожно iстинною в M. Формула, тотожно iстинна у будь-яких M, називається тотожно iстинною або логiчно загальнозначущою (скорочено - лзз).

3. Якщо формула F є невиконуваною в M, то вона називається тотожно хибною в M. Формула, невиконувана в усiх M, називається тотожно хибною, або суперечнiстю.

Приклад 5.7. Формула (xA(x,y)((xA(x,y) є виконуваною i вона ж є тотожно iстинною в усiх одноелементних областях M. Формула F(x1,x2,...,xn)((F(x1,x2,...,xn) тотожно iстинна, а формула F(x1,x2,...,xn)((F(x1,x2,...,xn) тотожно хибна. Тотожно iстинними будуть формули (xP(x)(P(y) i P(y)((xP(x).

Формули F1 i F2 називаються рiвносильними (еквiвалентними), якщо при всiх можливих пiдстановках значень замiсть їх змiнних вони набувають однакових значень; позначається F1 = F2.

Наприклад, усi тотожно iстиннi (усi тотожно хибнi) формули рiвносильнi мiж собою. Очевидно також, що коли F1 i F2 рiвносильнi, то формула F1~F2 є тотожно iстинною, і навпаки.

Множина тотожно iстинних формул логiки предикатiв є складовою частиною усiх формальних математичних теорiй, тому її дослiдження i опис є важливою задачею математичної логiки. Значення цiєї множини пiдтверджує той факт, що їй, як було зазначено вище, належать усi рiвносильнi спiввiдношення (тотожностi) логiки предикатiв.

Як i в логiцi висловлень постають двi проблеми. Перша - опис або побудова множини всiх тотожно iстинних формул, друга - перевiрка тотожної iстинностi заданої формули логiки предикатiв.

Якщо iснує процедура розв’язання другої з цих проблем, то на її основi можна сформулювати такий тривiальний алгоритм, що породжує шукану множину T тотожно iстинних формул. Послiдовно будуємо всi формули, кожну з них за вiдомою процедурою перевiряємо на тотожну iстиннiсть i вносимо до множини T тi, для яких результат перевiрки є позитивним.

Однак на вiдмiну вiд логiки висловлень, де така процедура iснує i зводиться до обчислення значень даної формули на скiнченнiй множинi значень її параметрiв, у логiцi предикатiв областi визначення предметних i предикатних змiнних формул є, взагалi кажучи, нескiнченними (злiченними або навiть незлiченними).

Метод обчислення значення формули шляхом пiдстановки значень замiсть змiнних i послiдовного виконання вказаних дiй є зручним для встановлення виконуваності заданої формули або доведення нерiвносильностi певних формул. Для цього достатньо пiдiбрати одну вiдповiдну пiдстановку. Застосовувати цей метод можна також, коли предметна область M є скiнченною. Пов’язано це з тим, що для скiнченної множини M = {a1,a2,...,an} кванторнi формули можна перетворити у рiвносильнi їм звичайнi формули логiки висловлень:

(xP(x)  =  P(a1)(P(a2)( ... (P(an),

(xP(x)  =  P(a1)(P(a2)( ... (P(an).

Замiнивши усi квантори за допомогою наведених спiввiдношень, будь-яку формулу логiки предикатiв можна перетворити у рiвносильну пропозицiйну форму або формулу логiки висловлень. Iстиннiсть останньої на скiнченнiй множинi M перевiряється за скiнченну кiлькiсть пiдстановок i обчислень.

Для доведення ж рiвносильностi предикатних формул, що заданi на нескiнченних предметних областях, прямий перебiр виключається i доводиться використовувати рiзнi опосередкованi методи.

Наприклад, вище шляхом простих мiркувань було доведено рiвносильнiсть формул, що описує переставнiсть однойменних кванторiв у двомiсних предикатах, тобто доведено iстиннiсть формул

(x(yA(x,y)~(y(xA(x,y) i (x (yA(x,y)~(y(xA(x,y).

Аналогiчними мiркуваннями доведемо рiвносильнiсть, що описує дистрибутивнiсть квантора (x вiдносно кон’юнeцiї:

The online video editor trusted by teams to make professional video in minutes