Поняття предиката, Детальна інформація

Поняття предиката
Тип документу: Реферат
Сторінок: 1
Предмет: Логіка
Автор: Олексій
Розмір: 7.4
Скачувань: 2147
Реферат на тему:

Поняття предиката

Числення висловлень, що розглядалось у попереднiх роздiлах, як алгебра висловлень i як формальна (аксiоматична) теорiя, є важливою i невiд’ємною складовою частиною всiх числень математичної логiки. Однак воно є занадто бiдним для опису та аналiзу найпростiших логiчних мiркувань науки i практики.

Однiєю з причин цього є те, що у численнi висловлень будь-яке просте висловлення розглядається як вихiдний об’єкт дослiдження, неподiльне цiле, позбавлене частин i внутрiшньої структури, яке має лише одну властивiсть - бути або iстинним, або хибним.

Для того, щоб побудувати систему правил, яка дозволяла б проводити логiчнi мiркування для виведення нетривiальних правильних висновкiв з урахуванням будови i змiсту простих висловлень, пропонується формальна теорiя, що дiстала назву числення предикатiв.

Теорiя предикатiв починається з аналiзу граматичної будови простих висловлень i грунтується на такому висновку: простi висловлення виражають той факт, що деякi об’єкти (або окремий об’єкт) мають певнi властивостi, або що цi об’єкти знаходяться мiж собою у певному вiдношеннi.

Наприклад, в iстинному висловленнi «3 є просте число» пiдмет «3» - це об’єкт, а присудок «є просте число» виражає деяку його властивiсть.

У латинськiй граматицi присудок називається предикатом, звiдси цей термiн i увiйшов у математичну логiку. Головним для логiки предикатiв є саме друга складова речення-висловлення - присудок-властивiсть. Вона фiксується, а значення об’єкта пропонується змiнювати так, щоб кожен раз отримувати осмисленi речення, тобто висловлення.

Наприклад, замiнюючи у наведеному вище висловленнi 3 на 1, 5, 9 або 12, матимемо вiдповiдно такi висловлення: «1 є просте число», «5 є просте число», «9 є просте число», «12 є просте число», з яких друге є iстинним, а решта - хибними висловленнями.

Таким чином, можна розглянути вираз «x є просте число», який не є висловленням, а є так званою пропозицiйною (висловлювальною) формою. Тобто формою (або формуляром), пiсля пiдстановки в яку замiсть параметра (змiнної) x об’єктiв (значень) з певної множини M, дiстаємо висловлення.

Аналогiчно можна трактувати, наприклад, пропозицiйнi форми «a є українцем», «b i c є однокурсники», «c важче d», або «точка x лежить мiж точками y i z». У першi двi з них можна пiдставляти замiсть параметрiв a, b i c прiзвища конкретних людей. У третю замiсть c i d назви будь-яких об’єктiв (предметiв), якi мають вагу. Для четвертої множиною M значень змiнних x, y i z є множина точок певної прямої.

Перша з цих пропозицiйних форм задає, як i в наведенiй ранiше формi, певну властивiсть для об’єкта a. Iншi три форми описують деякi вiдношення мiж вiдповiдними об’єктами.

Розглянувши конкретнi приклади i коротко зупинившись на мотивацiї та змiстовнiй iнтерпретацiї подальших понять, перейдемо до формальних математичних означень.

n-мiсним предикатом P(x1,x2,...,xn) на множинi M називається довiльна функцiя типу Mn(B, де B = {0,1} - бульовий (двiйковий) алфавiт.

Множина M називається предметною областю, або унiверсальною множиною, а x1,x2,...,xn - предметними змiнними, або термами предиката P.

Множина елементiв (a1,a2,...,an)(Mn таких, що P(a1,a2,...,an) = 1 називається областю iстинностi (або характеристичною множиною) предиката P.

Якщо P(a1,a2,...,an) = 1, то згiдно з логiчною iнтерпретацiєю будемо говорити, що предикат P є iстинним на (a1,a2,...,an). У противному разi, казатимемо, що предикат P є хибним.

Взагалi кажучи, можна означити так званий багатосортний предикат, як функцiю типу M1(M2(...(Mn(B, дозволивши різним його аргументам приймати значення з рiзних множин. Iнодi це буває доцiльним; однак частiше в логiцi предикатiв використовують наведене ранiше означення.

Неважко зрозумiти, що пропозицiйна форма є одним зi способiв задання предиката.

Для n = 1 предикат P(x) називається одномiсним або унарним, для n = 2 P(x,y) - двомiсним або бiнарним, для n = 3 P(x,y,z) - трьохмiсним або тернарним предикатом.

Очевидно, що коли в n-арному предикатi P(x1,x2,...,xn) зафiксувати деякi m змiнних (тобто надати їм певних значень з множини M), то отримаємо (n-m)-мiсний предикат на множинi M. Це дозволяє вважати висловлення нульмiсними предикатами, якi утворено з багатомiсних предикатiв пiдстановкою замiсть усiх їхнiх параметрів певних значень з предметної областi. Таким чином, висловлення можна розглядати як окремий випадок предиката.

Для довiльної множини M i довiльного n iснує взаємно однозначна вiдповiднiсть мiж сукупнiстю всiх n-мiсних предикатiв на M i множиною всiх n-арних вiдношень на M. А саме, будь-якому предикату P(x1,x2,...,xn) вiдповiдає вiдношення R таке, що (a1,a2,...,an)(R тодi i тiльки тодi, коли P(a1,a2,...,an) = 1. Очевидно, що при цьому R є областю iстинностi предиката P.

Крiм того, за будь-якою вiдповiднiстю C мiж множинами A i B (тобто C(A(B) можна побудувати бiнарний двосортний предикат P(x,y) таким чином: P(a,b) = 1 тодi i тiльки тодi, коли (a,b)(C для a(A i b(B.

Зокрема, будь-якiй функцiональнiй вiдповiдностi або функцiї f: Mn(M можна поставити у вiдповiднiсть (n+1)-мiсний предикат P на M такий, що P(a1,a2,...,an,an+1) = 1 тодi i тiльки тодi, коли f(a1,a2,...,an) = an+1.

Отже, такi фундаментальнi математичнi поняття як вiдповiднiсть (зокрема, функцiя), вiдношення, висловлення можна розглядати як окремi випадки бiльш загального поняття предиката.

The online video editor trusted by teams to make professional video in minutes