Проведення топографо - геодезичних робіт при розпаюванні земель колективної власності, Детальна інформація

Проведення топографо - геодезичних робіт при розпаюванні земель колективної власності
Тип документу: Дипломна
Сторінок: 29
Предмет: Географія, Геологія
Автор: Олексій
Розмір: 166.6
Скачувань: 3461
У теодолітах серії ТЗО використовується вертикальна осьова система повторювального типу, циліндрична, порожня.

Вона забезпечує два види обертання верхньої алідадної частини теодоліта: спільне з лімбом і відокремлене від лімба.

Під час загального обертання, коли відкріплено закріпний гвинт лімба, відлік по лімбу не змінюється. Під час часткового обертання, коли відкріплено закріпний гвинт алідади, а закріпний гвинт лімба, затиснутий, змінюються відліки по лімбу.

Горизонтальна осьова система встановлюється перпендикулярно до вертикальної осьової системи. Вона служить для обертання зорової труби, розміщення вертикального кутомірного круга та інших деталей. Горизонтальна вісь виконана заодно з корпусом зорової труби і встановлена в лагерах - втулках і . Внутрішні діаметри втулок ексцентричні відносно зовнішніх посадочних діаметрів. Це дає можливість виконувати юстирування нахилу осі обертання зорової труби.

Пристрій горизонтування призначений для приведення вертикальної осі у прямовисне положення. Він складається з підставки, що має форму тригранної призми з циліндричною втулкою, трьох підйомних гвинтів і установочного циліндричного рівня, з виправними гвинтами.

Установочний циліндричний рівень або циліндричний рівень біля алідади горизонтального круга складається з двох частин: чутливого елемента і підставки. Як чутливий елемент рівня використовується ампула з рідиною, внутрішня поверхня ампули має тороїдальну форму.

Радіус шліфованої поверхні, перпендикулярної до нижньої площини підставки (лінія АБ), перетинає цю поверхню в деякій точці N, що називається нуль пунктом. Дотична , що проходить через нуль-пункт рівня, називається віссю рівня. Таким чином, лінії LL і АВ повинні бути паралельні, в цьому полягає головна властивість нуль пункту. На зовнішній поверхні ампули нанесені поділки через 2 мм. Нуль-пункт - це точка на ампулі рівня, розміщена посередині ампули, відносно якої симетрично нанесені поділки шкали рівня.

Як наповнювач для ампули використовують етиловий ефір. Кінці ампули після заповнення рідиною в гарячому стані запаюються. При охолодженні з пару наповнювача утворюється бульбашка рівня. Вона має витягнуту форму з півколами на кінцях. Бульбашка рівня приймає вищу точку шліфованої поверхні ампули. Таким чином, для того, щоб лінію підставки АВ привести в горизонтальне положення, необхідно привести бульбашку рівня в нуль-пункт. При цьому вісь циліндричного рівня займе горизонтальне положення.

Основними параметрами циліндричного рівня є ціна поділки рівня т і

чутливість рівня DT. Ціна поділки рівня - це центральний кут, який відповідає дузі в одну поділку шкали ампули.

Чутливість рівня - це найменший кут, на який потрібно нахилити вісь рівня, щоб бульбашка перемістилася на десяту частку поділки шкали.

В теодоліті ТЗО застосовується циліндричний рівень з ціною поділки 45". Він являє собою просту ампулу, яка залита гіпсом в оправі. Один кінець оправи з'єднується з корпусом фіксовано, а другий юстувальними гвинтами. Для усунення зазору в сферичному шарнірі, використовується регулювальна гайка.

Для суміщення центра горизонтального круга з прямовисною лінією, що проходить через точку стояння теодоліта, застосовують нитковий висок або оптичний центрир. Як оптичний центрир теодоліта ТЗО використовується зорова труба. Теодоліт має порожнисту вертикальну вісь і отвір в дні футляра. Це дає можливість центрувати теодоліт над точкою місцевості за допомогою зорової труби, встановленої для цього вертикально об'єктивом вниз.

Для наведення зорової труби на предмет теодоліт має закріпні і навідні гвинти зорової труби, алідади і лімба.

Закріпні гвинти фіксують у нерухомому положенні зорову трубу, алідаду і лімба, навідні гвинти забезпечують їх повільне і плавне обертання.

Зорова труба - це оптичний пристрій, призначений для візуальних спостережень віддалених предметів. Зорові труби бувають астрономічні і земні; перші дають обернене, а другі - пряме зображення предметів. Вони розділяються на два види: труби з зовнішнім фокусуванням; труби з внутрішнім фокусуванням.

Сучасні геодезичні прилади мають зорові труби з внутрішнім фокусуванням. Зорова труба є складним оптико-механічним пристроєм, який включає такі оптичні елементи: об'єктив, лінзу фокусування 31, площин-но-паралельну пластинку з сіткою ниток і окуляр.

Об'єктив теодоліта ТЗО - це дволінзовий ахромат. Об'єктив і компонент фокусування утворюють телеоб'єктив, який дозволяє зменшити габарити зорової труби.

Між окуляром і фокусуючою лінзою розмішують сітку ниток, в площині якої формується зображення предмета, що розглядається. Для візирних цілей, що розташовані на різних віддалях, переміщають фокусуючу лінзу, обертанням кремальєри. Ця операція носить назву фокусування або установки зорової труби за предметом.

Сітка ниток - це плоскопаралельна пластинка з системою штрихів. У зоровій трубі з внутрішнім фокусуванням віддаль між об'єктивом і сіткою ниток не змінюється.

3.10 Обробка геодезичних зйомочних мереж на ПЕОМ

З метою автоматизації процесів математичної обробки результатів польових вимірювань розроблено ряд ефективних алгоритмів, які реалізовані у вигляді програмного забезпечення для різних типів ПЕОМ. При цьому автоматизація і повнота математичної обробки геодезичних вимірювань залежить як від характеру принципового підходу, покладеного в основу розробки програмного забезпечення, так і від типу використовуваної ПЕОМ. Тут можна умовно виділити три рівні. На першому рівні знаходяться алгоритми програм математичної обробки геодезичних вимірювань зйомочних мереж на програмованих мікрокалькуляторах (ПМК) типу МК-52, МК-61 і т.п. Для ПМК розроблена велика кількість програм розв'язання основних геодезичних задач, у тому числі програми зрівнювання окремих теодолітних і нівелірних ходів, розв'язання кутових і лінійних засічок. Враховуючи широке розповсюдження ПМК у геодезичній практиці, слід відмітити важливу роль таких програм у механізації обчислювальних процесів. Однак вони мають недоліки, властиві в цілому цьому класу програм:

- суттєве обмеження об'єму оброблюваних даних, викликане малими розмірами машинної пам'яті ПМК;

- трудомісткий в від даних у ПМК і неможливість друку результатів;

- низька швидкодія ПМК.

Для усунення вказаних недоліків були розроблені програми другого рівня. Ці програми розроблені для різних типів ЕОМ (ЕОМ EC; персональні ЕОМ; сумісних з IBM PC; мікро-ЕОМ типу "Електроніка" та ін,) Вони мають значно розвинені у порівнянні з першим рівнем можливості оцінювання точності, попереднього розрахунку точності мереж, що проектуються, зрівнювання мереж з вузловими точками і т.д. Більшість з цих програм дозволяють вести ввід і корегування даних, управляти процесом їхньої обробки у режимі діалогу з ЕОМ.

Як приклад однієї з найбільш вдалих програм другого рівня можна навести програму UTRIA, розроблену в НДІ автоматизованих систем планування і управління у будівництві (НДІАСБ м. Київ). Ця програма дозволяє строго зрівнювати мережі тріангуляції, трилатерації, полігонометрії, їхні можливі комбінації, а також виконувати попередній розрахунок точності запроектованих мереж.

Другим прикладом програм другого рівня може служити програма МАРК-2, розроблена на кафедрі геоінформатики та геодезії Донецького державного технічного університету, яка дозволяє вести обробку теодолітних, нівелірних і тригонометричних ходів будь-якої форми і видавати результати обчислень у вигляді документації, прийнятої на виробництві. Програми другого рівня, як правило, є достатньо ефективними, задовольняють потреби виробничників і широко впроваджуються в геодезичну практику завдяки широкому проникненню ЕОМ (особливо персональних ЕОМ).

З точки зору отримання правильних, точних і повних результатів під час розв'язання конкретних задач математичної обробки геодезичних вимірювань наявність програм другого рівня можна було б вважати цілком достатньою для цілей виробництва. Однак науково-технічний прогрес та комп'ютеризація виробництва ставлять перед програмним забезпеченням нові завдання.

По-перше, програмне забезпечення для математичної обробки геодезичних вимірювань повинне бути універсальним, тобто вирішувати досить широкий спектр геодезичних задач. Відповідно повинні бути уніфіковані форми вводу даних в ЕОМ для різних задач і передбачені можливості корегування даних.

The online video editor trusted by teams to make professional video in minutes