Дослідження ВТНП-плівок, Детальна інформація

Дослідження ВТНП-плівок
Тип документу: Курсова
Сторінок: 18
Предмет: Фізика, Астрономія
Автор: фелікс
Розмір: 117.9
Скачувань: 1539
Пiдставляючи (1.3.5) в (1.3.4), отримаємо

, (1.3.6)

де

, (1.3.7)

Поверхневий iмпеданс Z складається з дiйсної та уявної частин: поверхневого опору R та поверхневого реактансу X вiдповiдно. Величина (k називається комплексною глибиною проникнення, яка також має дійсну та уявну частини

, (1.3.8)

Величини (1 і (2 інколи називають індуктивною та резистивною глибиною скін-шару.. Із (1.3.7) отримаємо зв’язок з R i X :

,

(1.3.9)



Комплексну глибину проникнення можна розглядати як другий метод введення поверхневого iмпедансу, зв'язок уявної та дiйсної частин якого з Х i R задається спiввiдношеннями (1.3.9).

Внаслiдок неперервностi тангенцiйних складових електричного та магнiтного полiв на границi, спiввiдношення (1.3.6) залишаеться вiрним в довiльнiй точцi граничноi площини. Тому його можна розглядати як наближену однорiдну граничну умову для широкого класу граничних задач прикладноi електродинамiки (гранична умова Леонтовича). Цi умови є особливо важливими, бо можна розв'язувати зовнiшню електродинамiчну задачу при заданнi однiєi лише величини Z, не цiкавлячись розподiлом полiв всерединi металу.

з вiссю Y. З спiввiдношень (1.3.3, 1.3.4, 1.3.6) одержимо рiзнi, часто використовуванi спiввiдношення для поверхневого iмпедансу:

(1.3.10)

Якщо метал лiнiйний, то внаслiдок лiнiйностi рiвняння (1.3.1) поверхневий імпеданс не залежить вiд амплiтуд електричного i магнiтного полiв i визначається лише параметрами металу.

1.4. Залишковий поверхневий НВЧ опiр в надпровіднику.

В попереднiх роздiлах була побудована модель, що описує основнi електродинамiчнi властивостi ВТНП. Найбiльш важливими з точки зору застосування ВТНП в НВЧ та швидкодiючих пристроях є температурнi i частотнi залежностi Z цих матерiалiв[4].

Проте при достатньо низьких температурах експериментальна починає відхилятися від теоретичної, а при Т(0 вона досягає асимптотичного значення.Тобто, гранично досягненнi

Рис 1.4.1. Плівка ВТНП з включеннями ненадпровідної фази: а - модельне представлення; б - гранули, розділені ненадпровідними прослойками.

параметри реальних надпровiдних зразкiв визначаються їх реальною структурою, однорiднiстю, наянiстю дефектiв i т.д.

Дивимось модельну структуру ( рис.1.4.1 а ) надпровідникової плівки, пронизаної циліндрами із матеріала, який володіє нормальною провідністю. Такі циліндри можуть бути утворені нормально провідною фазою, яка розташована між надпровідними гранулами, які

володіють стовбчатою структурою ( рис.1.4.1 б ). Властивості між гранульних контактів не приймаються до уваги, поскільки нас цікавить лише наявність нормальної фази між гранулами. Допустимо, що нормальні стовбчики мають циліндричну форму з діаметром 2а, в той як на кожний стовбчик припадає середня площа (R0 поверхні плівки. Оцінимо долю об’єму плівки (, яку займають нормальні циліндри:

. (1.4.1)

Припустимо, що a<<(L, (<0.1. В протилежному випадку не можна припускати , що поле поза циліндричних включень однорідне. Тоді прийшлося би враховувати вплив полів циліндрів один на одного. Надпровідний матеріал плівки характаризується дієлектричною проникністю

, (1.4.2)

а нормально провідний матеріал циліндричних включень - діелектричною проникністю

. (1.4.3)

Тут (N - провідність, яка забеспечується носіями заряда, неперейшовшими в надпровідний стан, а (і - провідність матеріалу включень, які при заданій температурі не переходять в надпровідний стан. Вцілому можливо, що (і >>(N, оскільки в надпровіднику при T<
В роботі [12 ] отримані співвідношення для плівки, яка містить нормальні включення

, (1.4.4)

The online video editor trusted by teams to make professional video in minutes