Рене Декарт - засновник сучасної науки. Пам`яті видатного мислителя, Детальна інформація

Рене Декарт - засновник сучасної науки. Пам`яті видатного мислителя
Тип документу: Реферат
Сторінок: 4
Предмет: Особистості
Автор: CoolOne
Розмір: 29.7
Скачувань: 1435
Першим Декарт опублікував і закон заломлення світла (закон синусів), який зараз називається законом В.Снелла (Снелліуса). Є свідчення, що В.Снелл опублікував своє відкриття в курсі лекцій, які він читав у Лейденському університеті в 1621-1622 рр. Я.Гоол, який був професором математики в Лейдені після В.Снелла, про праці останнього дізнався лише після того, як захотів перевірити роботу Декарта. Тому в листі до Костянтина Гюйгенса Гоол пише, що він вражений відкриттям обох учених. Снелл отримав цей закон із досліду, Декарт – із роздумів. На відміну від Стелла, Декарт із цього закону вивів багато наслідків. Найважливішим є той факт, що швидкість світла може бути скінченною. Це випливало з того, що він розкладав швидкість світла на дві складові, одна з яких змінювалася. Безперечним є факт, що на обох учених мав великий вплив Й.Кеплер, який близько підійшов до відкриття цього закону.

Саме в диспуті з Декартом про поширення світла в середовищах з різною густиною П.Ферма сформулював свій знаменитий принцип найменшого часу, що відіграв важливу роль у становленні сучасної фізики.

У тій же “Діоптриці” Декарт описує будову ока та суть процесу побудови зображення та його відчуття в оці. Цей опис покладений в основу сучасного уявлення про око та процеси, які там відбуваються. Тут же наведена методика шліфування гіперболічних поверхонь.

Силу свого методу Декарт демонструє в “Метеорах”. Тут уперше метереологія постає як окрема наукова дисципліна.

В галузі анатомії та біології можна відзначити те, що він сприйняв теорію кровообігу В.Гарвея та не сприйняв його ж робіт про роль серця. У цілому ж він розглядав людський організм як механічний автомат. Слід відзначити, що до цього повернулись у ХХ столітті при створенні кібернетики.

На публікацію праць Декарта великий вплив мала доля Галілея: у 1633 році був виданий папський вердикт про заборону його космологічних праць, які підтверджували геліоцентричну систему нашого світу. Через це свої роботи з космології Декарт і не поспішав публікувати. В листі до Мерсенна він писав, що деякі його праці будуть опубліковані після смерті, не раніше як через 100 років.

Вердикт на заборону праць Декарта був виданий у 1663 році, через 13 років після його смерті. Декартові це вже було всеодно. Але зерна, посіяні ним, дали щедрий урожай.

Наведемо ще одну цитату Декарта з його листа Бекману від 26 березня 1619 року [8]: “... я намагаюся викласти зовсім нову науку, яка дозволила б загальним чином розв’язати усі проблеми незалежно від виду величини, неперевної чи дискретної, виходячи кожен раз із природи самої величини.... Це не може бути праця одинака, та її ніколи не закінчать”. Саме намагаючись просунути цю працю якомога далі, тобто працюючи над проблемами створення універсального числення, Вільгельм Ляйбніц створив інтегро-диференційне числення та заклав основи синтезу математики та логіки. Очевидно саме тому, що основні космологічні та релігійні праці Декарта були заборонені, Ляйбніц, який добре знав науковий доробок Декарта, шукав нові сфери для доведення правоти методу свого вчителя, щоправда заочного (очним учителем був Х.Гюйгенс). Як бачимо, це йому цілком вдалося.

Трохи іншим шляхом, але також від Декарта, пішов Ісаак Ньютон. По-перше, він підійшов до проблеми не побудови, а обчислення дотичних до кривих. Так появився ньютонівський варіант математичного аналізу: метод флюксій та флюент. Але на відміну від Ляйбніца, який використовував методологію Декарта, Ньютон створив свою власну методологію, яка є практично синтезом методолoгії Декарта та Ф.Бекона. Найбільш чітко це подано в його правилах умовиводів у фізиці:

Правило 1. Не треба вимагати від природи інших причин понад ті, які істинні та достатні для пояснення явищ.

Правило 2. Тому, наскільки можливо, одні й ті ж причини ми повинні приписувати проявам природи однакового виду.

Правило 3. Такі властивості тіл, які не можуть бути ні підсилювані, ні послаблювані і які є у всіх тілах, над якими можна проводити випробування, повинні вважатися за властивості всіх тіл взагалі.

Правило 4. В експериментальній філософії пропозиції, які виведені з явищ за допомогою загальної індукції повинні вважатися за точні чи приблизно правильні, незважаючи на можливість протилежних гіпотез, поки не знайдуться явища, якими вони або більше уточняться, або ж будуть визнані за недійсні.

Перші два правила – це практично модифікована дедукція Декарта, останні два правила це – індуктивний принцип Ф.Бекона. Останнє правило, до речі, Ньютон ввів у третьому виданні “Математичних начал натуральної філософії”, це свідчить про те, як довго він роздумував та працював над своїм методом. У рукописі було ще й п’яте правило [9], в якому Ньютон протиставляє декартовій дедукції локківський емпіризм.

Пізніше завдяки Х.Вольфу, І.Канту, Л.Ейлеру ця методологія була пов’язана з вимірюванням [10; 11]. Так зародилася сучасна фізика, математика та ряд інших наук. Саме шляхом оптимального дедуктивного синтезу була створена сучасна електродинаміка, термодинаміка, кібернетика, квантова теорія.

Дальше узагальнення декартових координат до узагальнених призвело до побудови аналітичної механіки та загальної теорії відносності. Кінематика ж – це взагалі тріумф застосування аналітичної геометрії Декарта. Узагальнення геометричного підходу Декарта призвело до появи нових векторних просторів, що дало життя таким розділам сучасної математики та фізики, як функціональний аналіз, аналітична механіка, статистична механіка, квантова механіка, алгебраїчна геометрія тощо. Можна розглядати і як тріумф картезіанства спеціальну та загальну теорії відносності [12; 13]. Остання в працях Дж.А.Уілера була розвинена до геометродинаміки, тобто зміна геометричних властивостей простору-часу визначається саме часом, хоча й він нерозривно пов’язаний з геометрією фізичного явища (середовища, поля).

З методологічної точки зору в синтетичному підході Декарта є свої плюси та мінуси. До плюсів належить те, що завдяки Декарту почалась інтенсивна формалізація усіх сфер знань. Саме його метод є головним в цій області. Ідеї В.Ляйбніца [9] та Ф.Б. де Кондільяка [10] синтезу математики та логіки призвели до створення Булем, Пеано, Морганом та Фреге математичної логіки [9-12]. Вона відіграла надзвичайно важливу роль у становленні та розвитку сучасної математики та кібернетики, особливо програмування. Б. Рассел та А.Н. Уайтхед “забувши”, напевно, методологію Декарта, поклали цю нову дисципліну в основи математики. Оскільки математика в цілому в сучасній науці відіграє й метанаукову роль, то описати всі можливі розділи математики, в тому числі й прогнозувати появу нових за допомогою якогось одного її розділу, у т.ч. й математичної логіки, неможливо, що й показав розвиток досліджень у цій галузі [11]. Інший підхід запропоновано в поліметричному методі [12]. Тут сконструйований елемент змінної міри, який може бути як математичний у класичному сенсі, так і ні. Сам елемент є не що інше, як розширене представлення декартової змінної із врахуванням методології Ньютона, Б.Трентовського [15] (його кібернетики), Е.Харріса [16] та процедури вимірювання (методологія Н.Кемпбелла [17]). Цей новий підхід знімає основні протиріччя з основ математики в трактуванні Рассела-Уайтхеда-Гільберта-Брауера-Маркова та є основою натурального підходу в основах математики, що базується на ідеях Декарта та Ньютона. Тут ще раз можна згадати думку Декарта, яка вже цитувалася вище та була висловлена в листі до Бекмана, що цю працю ніколи не закінчать. З цієї точки зору поліметричну методологію можна трактувати як теорію оптимального системного синтезу будь-якої сфери знань [12]. За допомогою цього методу вдалося розв’язати проблему ХХ століття в кібернетиці, згідно Ст.Біра (проблема складності–простоти), якраз через обчислення, як передбачав Дж.Касті. І хоча сама методологія будувалася, виходячи з ідеї системної оптимізації, в її основі лежить методологія Р.Декарта-Ф.Бекона-І.Ньютона.

Таким чином, дуже важко знайти в сучасній науці якусь сферу, на появу та формування якої більшою чи меншою мірою не мали б впливу ідеї та праці цього вченого. У такому стислому огляді це тим більше зробити практично неможливо. Тому тут відзначено лише ті сторони діяльності Декарта, які, на думку автора, зробили найбільший вклад у розвиток науки та культури.

Наприкінці хочу висловити подяку професору Кратку М.І. та аспіранту Біруку О.М. за надання додаткових джерел інформації про творчість та життєвий шлях Декарта.

Література

Рассел Б. Історія західної філософії. – К.: Основи, 1995. – 760 с.

Jacobi C.G. On the life of Descartes and his method of rightly conducting the reason and seeking truth in the sciences // Uspiekhy Fizicheskikh Nauk, Russian Academy of Sciences, v.42, No.12, 1999. – P.1227-1234.

Фишер К. Декарт. – С.-Пб.: МИФРИЛ, 1994. – 527 с.

Матвиевская Г.П. Рене Декарт. – М.: Наука, 1976. – 272 с.

Декарт Р. Рассуждение о методе с приложениями. Диоптрика, Метеоры, Геометрия. – М.: Изд-во АН СССР, 1953. – 656 с.

Декарт Р. Метафізичні розмисли. – К.: Юніверс, 2000. – 302 с.

Ньютон И. Математические начала натуральной философии. – М.: Наука, 1989. – 690 с.

Ляткер Я.А. Декарт. – М.: Мысль, 1975. – 200 с.

Лейбниц В. Сочинения. Т.3. – М.: Мысль,1984. – 735 с.

Де Кондильяк Э.Б. Логика, или начала искусства мыслить: Язык исчислений. – М.: Мысль, 1983. – С. 183-270; 271-375.

The online video editor trusted by teams to make professional video in minutes