Нестаціонарні зірки. Фізичні процеси, які забезпечують нестаціонарність, Детальна інформація

Нестаціонарні зірки. Фізичні процеси, які забезпечують нестаціонарність
Тип документу: Курсова
Сторінок: 8
Предмет: Фізика, Астрономія
Автор: фелікс
Розмір: 167.4
Скачувань: 1716
Еддінгтон припускав, що зірка пульсує цілком, а виявилося, що пульсують тільки зовнішні прошарки, а глибокі надра зірки в пульсації не беруть участь. На це вперше звернув увагу радянський учений С. А. Жевакін і зробив відповідні розрахунки.

Розглянемо на якій основі цей механізм здійснюється в зірках. Для цього ми повинні пригадати процеси, що відбуваються в надрах зірок протягом їхньої еволюції.

Як відомо, у надрах зірок відбуваються термоядерні реакції, внаслідок яких із легких елементів утворяться більш важкі. Цей процес продовжується, поки в результаті таких реакцій може виділятися енергія, що протистоїть гравітаційній силі. Для того, щоб “зайнявся" визначений елемент (тобто запаси цього елемента почали перетворюватися в більш важкі елементи), потрібна відповідна температура, а отже і густина, в центрі зорі. Тому від початкової маси зірки залежить, на якому елементі зупиняться термоядерні реакції.

Спочатку в надрах зірки “горить" водень, перетворюючись у гелій. При цьому зірки займають на діаграмі Герцшпрунга-Рессела (див. мал. 4) смугу, що називають головною послідовністю. Коли в ядрі зірки залишається занадто мало водню, щоб йшли реакції, гравітаційна сила «перевішує», зірка стискується, густина і температура в середині підвищується, і створюються сприятливі умови для “горіння" гелію й утворення вуглецю. При цьому зірка роздувається, переходячи в область гігантів.

Але в зовнішніх прошарках ще продовжується перетворення водню на гелій. Джерелом порушення пульсації є саме двічі іонізований гелій у зоні, що знаходиться на глибині декілька сотень тисяч кілометрів під поверхнею зірки. Чим далі в глибину цієї зони, тим вище температура і сильніше іонізований гелій, і, нарешті, він цілком іонізується. Саме завдяки іонізованому гелію утворюються сприятливі умови для так званого “клапанного механізму": при випадковому невеликому стиснені, тобто при підвищенні тиску і температури, у зоні збільшується поглинання випромінювання, що перешкоджає відводові тепла назовні. Ця додаткова енергія змушує розширюватися газові прошарки, і виносить їх назовні за початкове положення. Це, у свою чергу, знижує температуру і тиск, що призводить до стиснення. Так продовжується періодичний процес пульсацій.

В процесі пульсацій змінюється і радіус, і температура зірки, внаслідок чого росте її блиск. Але максимуми температури і радіуса не співпадають, і ця різниця залежить від глибини зони іонізації гелію і інших внутрішніх умов зірки. Тому для різноманітних типів зірок зсув між кривою блиску і кривої променевих швидкостей (який відображає швидкість змін радіуса) різний. Це також спричинило за собою і різноманітну форму кривих блиску.

Всі класичні пульсуючі зірки знаходяться в так званій смузі нестабільності на діаграмі Герцшпрунга-Рессела. Саме там створюються сприятливі умови для пульсацій. Її блакитна межа визначається утриманням іонізованого гелію в зовнішніх шарах і масою зірки, а червона — конвекцією, що перешкоджає пульсаціям.

Але в такому виді теорія пульсацій добре придатна тільки для класичних пульсуючих зірок, зокрема цефеїд, що зовсім нещодавно лишили головну послідовність. Складніше пояснити пульсації довгоперіодичних зірок, що перебувають у більш пізній стадії еволюції, коли гелій горить у прошарку навколо ядра, у якому гелій уже цілком перетворився на вуглець. Тяжко пояснити нестабільність їх кривих блиску і періодів. Існують гіпотеза про внесок у пульсації зони іонізованого водню, а також про внесок графітових частинок у непрозорість.

Ще важче пояснити пульсації білих карликів (ZZ Кита) і найбільше загадкових пульсуючих зірок типу \x03B2 Цефея, що знаходяться далеко від смуги нестабільності. Для них поки що не існує теорії пульсацій.

Типи пульсуючих зірок

У таблиці для різноманітних типів пульсуючих зірок приведені основні характеристики і їх клас світності, що визначається по діаграмі Герцшпрунга-Рессела. Типи зірок приведені в порядку зменшення їхніх періодів.



Період Амплітуда Спектральний клас Клас світності Позначення типу по ЗКЗЗ

Довгоперіодичні пульсуючі зірки Неправильні -- 1-2 F,G,K,M,S Надгіганти і яскраві гіганти L

Міріди (тип

О Кита) 100-1000 d > 2.0 Me, Se Гіганти M

Напівправильні 30-1000* d 1-2 F,G,K,M,S Надгіганти і яскраві гіганти SR

тип RV Тільця 30-200* d 1-2 F,G,K Надгіганти і яскраві гіганти RV

Класичні пульсуючі зорі тип \x03B4 Цефея 1-70 1-2 F5-K0 Надгіганти D Cep

тип W Діви 1-70 1-2 F5-K0 Надгіганти CW

тип RR Ліри .2-1.0 .5-2 A7-F5 Надгіганти RR

тип SX Фенікса .05-.2 .2-1.2 A – F Субкарлики SX Phe

тип \x03B4 Щита <0.3 0.001-0.3 A – F Карлики D Sct

Зірки з не радіальними пульсаціями тип \x03B2 Цефея 3-7 0.1 B0-B5 Гіганти і субгіганти B Cep

тип ZZ Кита 100-1000 s 0.3 DA Білі карлики ZZ

Цефеїди

Цефеїди (або зірки типу \x03B4 -Цефея) є найбільш вивченими зірками, у яких більшість явищ добре пояснюються пульсаціонною теорією.

Це жовті надгіганти, що порівняно нещодавно вийшли з головної послідовності. Їхні радіуси 10-150 радіусів Сонця, маси 3-16 маси Сонця.

Криві блиску, як правило, дуже асиметричні. В районі періоду в 2 дні з'являється горб на спадній гілці, у районі 9 днів - плоский максимум, а при великих періодах - горб на спадній гілці. Це пояснюють наявністю двох коливань, що змінюються місцями з амплітудою біля 9 днів. Тому ж у районі цього періоду спостерігається мінімум амплітуди, через те, що коливання гасять один одного.

Загалом, амплітуда росте з періодом, що пояснюється просуванням по діаграмі Герцшпрунга-Рессела (див. малюнок ).

The online video editor trusted by teams to make professional video in minutes