Нестаціонарні зірки. Фізичні процеси, які забезпечують нестаціонарність, Детальна інформація

Нестаціонарні зірки. Фізичні процеси, які забезпечують нестаціонарність
Тип документу: Курсова
Сторінок: 8
Предмет: Фізика, Астрономія
Автор: фелікс
Розмір: 167.4
Скачувань: 1694
Криві блиску показують сильну нестабільність від циклу до циклу, хоча крива може бути описана одним середнім періодом (див. мал. 9).

Подібна нестабільність може бути пов'язана з порушенням пульсацій у зоні іонізованого водню в протяжній атмосфері зірки і проходженням ударних хвиль. Проте, остаточної теорії пульсацій подібних зірок, також як і інших довгоперіодичних змінних, не існує.

Зміни періодів мають різноманітний характер: стрибкоподібні і плавні неправильні зміни (найбільш частий тип), циклічні стрибкоподібні зміни, циклічні плавні (синусоїдальні зміни). Цикли цих змін у тих зірок, у яких вони можуть передбачатися складають значення 13000-22000 d.

Що таке міріди?

У еволюції зірок із масами порядку сонячної або більшими є стадія, коли зірка стає дуже активною. Світило, яке раніше було подібне до нашого Сонця, за порівняно короткий час “розбухає”, збільшуючи свої розміри в сотні разів і перетворюючись у холодну червону зірку гігант. Більшість зірок у цій стадії виявляє нестабільність — пульсує. Їхній візуальний блиск більш-менш регулярно змінюється на декілька зоряних величин із періодами від сотні днів до півтора-двох років.

Першою такою змінною зорею, на яку звернули увагу астрономи, була Міра Кита. Вона надалі і дала назву цілому класу змінних зірок. У серпні 1596-року німецький астроном Давид Фабріціус помітив у сузір'ї Кита зірку, яку не зміг знайти ні на зоряних картах, ні в каталогах. Але через декілька місяців блиск зірки ослаб настільки, що вона перестала бути видимою неозброєним оком. У 1603 році Йоганн Байер при упорядкуванні свого знаменитого зоряного атласу (першого атласу, де зірки одержали позначення у виді грецьких букв) знову помітив ту ж зірку, яку він, не підозрюючи про відкриття Фабріціуса, заніс в атлас як зірку 3-й величини і привласнив їй позначення О Кита. В лютому 1609 року її знову спостерігав Фабріціус; тоді ж він і назвав її Мiга (від латинського “дивна”).

Хоча Фабріціусу і належить честь першовідкривача Міри, спеціальних спостережень він не вів. Регулярні спостереження Міри Кита вперше виконали Хольвард і Фулленіус у Нідерландах — ці роботи відносяться вже до 1630-х — 1640-х років. Першим же, хто знайшов періодичність у змінах блиску Міри Кита, був французький астроном Буйо. Період зірки він визначив у 333 дня, що близько до нині прийнятого значення (331,6). К XVII- XVIII сторіччям відносяться відкриття ще декількох довгоперіодичних змінних — \x03C7 Лебедя (цю зірку раніш нерідко називали “Міра Лебедя”), а також R Гідри і R Льва.

Легко зрозуміти, чому Міру й інші подібні їй зірки були в числі перших змінних зірок, відкритих астрономами і систематично дослідженими. Це пояснюється, насамперед, великою амплітудою змін їхнього блиску. Самі яскраві з мірід у максимумі можуть бути помітні навіть неозброєним оком, у той час як у мінімумі бувають доступні не всякому телескопу. Рекорд належить зірці \x03C7 Лебедя: у максимумі її блиск досягає візуальної величини 3,3m, а в мінімумі падає майже до 14m, тобто амплітуда блиску досягає без малого 11 зоряних величин!

Міріди займають особливе місце серед виявлених і вивчених змінних зірок. Так, у 4-му виданні “Загального каталогу змінних зірок” (ЗКЗЗ) із 28455 включених у нього зірок 5829 — міріди (більше 20%). Причина значного числа відомих мірід криється в порівняній легкості їхнього виявлення: по-перше, завдяки великим амплітудам зміни блиску, а по-друге, міріди — це зірки гіганти високої світності (десятки тисяч сонячних), тобто вони можуть спостерігатися на величезних відстанях, у сотні і тисячі парсек. Міріди — холодні червоні зірки, що пройшли довгий шлях еволюції. Температура їхньої поверхні біля 2000-3000К, Більшість відноситься до спектрального класу М. Це зірки, багаті киснем. Але зустрічаються серед мірід і вуглецеві зірки, що належать до спектрального класу G.

Довгоперіодичні змінні

Довгоперіодичні змінні зірки, як випливає із самої назви, змінюють свій блиск достатньо повільно, із періодами в сотні днів (частіше усього зустрічаються періоди від 150 до 700 діб). Клас таких змінних містить у собі множину досить різноманітних по своїх характеристиках зірок.

Довгоперіодичні змінні діляться на два підкласи: змінні типу Міри Кита (або власне міріди) і напівправильні змінні. Одним із критеріїв, по якому зірку відносять до тієї або іншої категорії, служить амплітуда коливань блиску. До мірід звичайно належать зірки з амплітудою більшої 2,5m, до напівправильних — зорі, амплітуда зміни блиску котрих менше 2,5m. При цьому треба відзначити, що міріди в середньому мають великі періоди і змінюють блиск із більшою регулярністю, ніж напівправильні зірки. Таким чином, між двома підкласами існують реальні фізичні розходження.

Відносно регулярну криву блиску мають лише деякі міріди. Для більшості ж зірок цього типу зміна блиску відзначена різноманітними іррегулярностями, що з однаковою можливістю можуть зустрічатися як на висхідній гілці кривої, так і на спадної, і не мають періодичностей. Криві блиску мірід можна розділити на три типа:

I — одна з гілок кривої йде крутіше, ніж інша;

II — крива блиску більш-менш симетрична;

III — крива блиску має “горб” на однієї з гілок, або у її два максимуми протягом одного періоду.

У напівправильних змінних звичайно немає стійкої форми кривої блиску. Якщо порівняти криві блиску зірок типу Міри Кита і криві блиску напівправильних змінних, очевидно, як сильно вони різняться. Треба сказати, що всі довгоперіодичні змінні дуже зручні для візуальних спостережень за допомогою бінокля, підзорної труби або невеличкого телескопа. У максимумі вони досягають 5-ї — 7-ї зоряної величини, а довгі періоди дозволяють спостерігати декілька зірок одночасно.

Різноманітні фізичні процеси, що протікають у надрах і особливо в оболонках цих зірок, безумовно, відбиваються на їхній кривій блиску. У більшості мірід (наприклад, у R Лева, U Оріона, U Геркулесу) змінюється висота максимуму. А у зірки U Геркулесу може змінюватися положення і форма “горба” на висхідній гілці, іноді “горб” зникає зовсім. Аналогічно поводиться крива блиску зірки R Лева. B свою чергу у R Орла дуже сильно змінюється період. А оскільки періоди нестабільні у багатьох мірід, то важливе значення мають щільні ряди спостережень, що дозволяють точно визначити момент настання максимуму.

Не менше цікаві напівправильні змінні, що змінюються, як правило, на 1,5-2m, вони дають можливість із скромними спостережливими засобами простежити весь хід кривої блиску від максимуму до мінімуму і уточнити період, що частіше за все встановлений із великою похибкою. До того ж у цих зірок у змінах блиску можуть існувати додаткові періоди, що відрізняються від основного на ціле число: Р/2, Р/3 і так далі. Ці періоди можна виділити, тільки маючи безупинний ряд послідовних спостережень.

Пульсації і ударні хвилі

Дотепер ми не розглядали фізичні процеси, які призводять до зміни блиску довгоперіодичних змінних. Одна з можливих причин коливань блиску — пульсації зірок. Теорія пульсації добре пояснила змінність цефеїд. Але механізм, що призводить до коливань блиску мірід, дотепер точно не встановлений. Одна з гіпотез пояснює пульсації подібних зірок нестійкістю ядерних реакцій горіння гелію в сферичному прошарку в надрах зорі, а на поверхні ця нестійкість виявляється у виді коливань.

При пульсаціях поверхні зірки в її атмосфері можуть утворитися ударні хвилі. Пояснимо, що це таке. Збудження невеличкої сили передаються в газі у виді звукових хвиль. Якщо, наприклад, створити в якомусь місці простору надлишковий (порівняно з навколишнім середовищем) тиск, то він передається, унаслідок теплового руху молекул, частинкам у сусідніх областях простору; ті, в свою чергу, передадуть надлишок тиску сусідам і так далі. Швидкість звука в газі відповідає середньої швидкості теплових рухів молекул газу, і в атмосферах мірід, де Т ( 1000-2000 К, швидкість звука складає 1,5-3 км/с (нагадаємо, що в земній атмосфері у поверхні ця швидкість дорівнює 0,33 км/с).

Якщо шару газу додати швидкість руху, що перевищує швидкість звука, то виникне якісно інше явище. Цей шар газу полетить, загрібаючи перед собою все нові і нові порції газу, подібно тому, як снігова лавина, що несесеться вниз по схилу гори, створює перед собою сніговий вал, який постійно збільшується. Густина газу на межі “вала” наростає стрибкоподібно — такий “вал” як би вдаряє по спокійному, незбудженому газу, прискорюючи його. Тому поверхню, де відбувається стрибок, називають ударним фронтом, а саме явище надзвукового поширення стрибка густини — ударною хвилею.

Емісійні спектральні лінії

Є данні астрономічних спостережень, які показують, що в оболонках мірід поширюються ударні хвилі. У спектрах цих зірок спостерігаються чисельні лінії поглинання, характерні для холодного газу — лінії слабко збуджених атомів і молекул. Головна особливість таких спектрів — потужні смуги молекул окису титана ТiО. Проте час від часу вигляд спектру мірід помітно змінюється. Поблизу мінімуму блиску спалахують емісійні лінії водню, іонізованого заліза й інші елементи, а інтенсивність смуг поглинання окису титана починає падати. Зірка збільшує свій блиск, проходить максимум, після чого емісійні лінії в спектрі слабшають і на спадній гілці кривій блиску пропадають; смуги TiО, навпроти, посилюються. В наступному мінімумі цикл починається знову.

Таке поводження спектра можна пояснити проходженням ударної хвилі через атмосферу міріди. При коливанні поверхні зірки, у той проміжок часу, коли поверхня рухається назовні з надзвуковою швидкістю, над нею виникає ударний фронт у вигляді сфери, центр якої збігається з центром зірки. Швидкість ударної хвилі спочатку велика, 60-100 км/с, тобто в десятки разів перевищує швидкість звука. З віддаленням від поверхні хвиля поступово витрачає свою енергію. Приблизно половина енергії хвилі іде на прискорення все нових і нових шарів газу, друга половина — на нагрів його. При великій швидкості хвилі газ за її фронтом нагрівається до високої температури. Ця температура залежить від швидкості хвилі і може приймати значення від 15-20 тис. К (при швидкості в 30 км/с) до 100 тис. К (при швидкості в 100 км/с). У газі за фронтом хвилі відбувається дисоціація (розпад) молекул і іонізація нейтральних атомів. Зникнення молекул окису титана за фронтом призводить до ослаблення смуг TiО і як би просвітлює атмосферу зірки у візуальній області спектра — блиск зірки наростає. У той же час іонізовані атоми водню і металів рекомбінують з електронами, що супроводжується сильним випромінюванням в лініях цих елементів — тільки в лінії водню (Н\x03B1) може випромінюватися до 1 % всієї світності зірки!

*



\x0152

\x00A8

The online video editor trusted by teams to make professional video in minutes