Нестаціонарні зірки. Фізичні процеси, які забезпечують нестаціонарність, Детальна інформація

Нестаціонарні зірки. Фізичні процеси, які забезпечують нестаціонарність
Тип документу: Курсова
Сторінок: 8
Предмет: Фізика, Астрономія
Автор: фелікс
Розмір: 167.4
Скачувань: 1716
Будь-які засоби класифікації зірок по типах змінності спираються на загальний вид кривої блиску і спектральний клас. Проте, такий підхід не завжди вдалий, якщо мова йде про напівправильні змінні. Для них часто не можна розглядати загальну криву блиску, тому що вона містить ділянки, характерні для зірок різноманітних типів. Відбувається це, мабуть, тому що напівправильні змінні зорі здебільшого, по-перше, мультиперіодичні і всі компоненти цієї мультиперіодичності виявляють себе дуже активно, тобто мають амплітуду, порівнянну з головним коливанням. А, по-друге, у багатьох зірок цього типу пульсації або ще не установилися, або по якимось причинах не стабільні, і період основного коливання також змінюється.

Але все таки ці зірки дуже схожі на зірки типу Міри Кита. Якби можна було "зібрати" всі неправильності мірід і збільшити їх у декілька разів, то утворилися б саме змінні з напівправильним типом зміни блиску. Термін "напівправильні змінні" з'явився наприкінці двадцятих років. Їм позначалися зірки, які, на перший погляд, мали якусь періодичність, але з іншої сторони їхнє поводження мало такі неправильності, що цю періодичність не вдавалося класифікувати. Поступово таких зірок ставало все більше, але до нашого часу накопичився також і великий спостережливий матеріал. Стало ясно, що всі ці зірки є червоними гігантами або надгігантами і належать до зірок AGB або RGB.

На сьогоднішній день є дуже груба класифікація SR-зірок (від англійського "semiregular" - напівправильний), яку можна узагальнити, використовуючи три фундаментальні роботи: "Пульсуючі зірки" за редакцією Б.В.Кукаркина, "Загальний каталог змінних зірок", складений групою московських астрономів і виданий у 1985 році і книга "Змінні зірки" Гоффмейстера, Ріхтера і Венцеля, переведена на російську мову в 1990 році. Утворюється така схема (див. таблицю). Якщо додати до неї напівправильні змінні типу RV Тільця, що є надгігантами і перебувають у стадії гілки червоних гігантів (RGB), то одержимо повну сучасну класифікацію напівправильних змінних зірок.

Вже по цій схемі очевидно, що підкласи SR-зірок сильно змішані. Особливо це стосується зірок підтипів SRb. Існує їхній розподіл на "червоні" і "блакитні", що запропонували австрійські учені Ф. Кершбаум і І. Хрон у 1992 році, базуючись на статистичних дослідженнях періодів, амплітуд, температур, темпів втрати маси, присутності навколозоряного пилу й особливостей спектрів. Вони вказують, що SRa-зірки є проміжними об'єктами між мірідами і SRb-зірками.

PRIVATE SRa M, G спектри, P приблизно постійні, амплітуди малі, форма кривій блиску сильно змінюється, мають емісійні лінії дуже схожі на зірки типу Міри Z Aqr, P=136. 9 днів, M1e-M3e

SRb M, G, S спектри, P-? цикли різної тривалості, три види поводження: квазіперіодичні, постійне, хаотичне RR Cr AF Cyg

SRc Пізні спектри, надгіганти mu Cep RS Cnc P=1700 днів

SRd F, G, K спектри, відрізняються від інших відсутністю або дуже слабкими смугами окису титана, великими швидкостями і світностями; гіганти і надгіганти UU Her AG Aur

Варто зауважити, що SRc-клас фактично відзначає тільки зорі - надгіганти, частіше за все зі змінністю типу SRa.

Крім того, зірка AF Cyg цілком може бути прототипом окремого класу зірок (як, наприклад, RV Tau). Цей об'єкт показує послідовне "переключення" коливань, значення періодів котрих ніяк не залежать один від одного. Один період зміняє інший або який не будь час обидва періоди можуть діяти одночасно. Часто спостерігається чергування глибоких і вторинних мінімумів; середній період біля 160 днів. З останніх досліджень самої AF Cyg видно, що відбулася двічі стрибкоподібна зміна періоду: 89, 164, 93 днів. Час дії кожного з періодів приблизно однаковий, а повна тривалість усього циклу "переключень" складає біля 1915 днів, тобто 5,3 року.

Таким чином, великий і неоднорідний клас напівправильних змінних потребує уважного підходу і ревізії, що цілком успішно можна провести, використовуючи сучасні математичні методи і вже наявний спостережливий матеріал.

Отже, мабуть, самий однорідний клас серед напівправильних змінних являють собою зірки типу RV Тельця. Криві блиску цих зірок хоч і мають сильні неправильності, але в них можна легко помітити визначену закономірність. Вона проявляється в тому, що більш глибокі (головні) мінімуми заміняються менш глибокими (вторинними). Глибина цих мінімумів може змінюватися так, що головні мінімуми можуть перетворюватися в повторні і навпаки; повна амплітуда змін блиску може досягати 3-4 зоряних величин у візуальній області. Періоди між двома сусідніми головними мінімумами (вони називаються формальними) знаходяться в межах від 30 до 150 днів. До підтипу RVa відносять зірки, середній розмір яких не змінюється (як у AC Her). Середній блиск зірок підтипу RVb (сама RV Tau) повільно змінюється з періодом від 600 до 1500 днів і амплітудою до 2 зоряних величин. Дуже цікава в цьому відношенні зірка DF Лебедя (мал.3). Її швидке коливання має період 49.8 днів. Друге, повільне, має період 780. 2 днів. Саме ж цікаве, що амплітуда швидкого коливання — змінна! У максимумі повільного коливання вона велика, а в мінімумі загасає і зменшується до 0.3 зоряної величини. Зірки типу RV Tau по деяких ознаках схожі на зірки типу Міри Кита. Проте, RV-зірки не мають таких щільних і холодних пилових оболонок, які містять велике число різноманітних молекул. У той же час зірки типу RV Tau схожі і на цефеїди. Наприклад вуглецева зірка RU Жирафа, що вважається цефеїдою, раптом на час припинила коливання блиску, що властиво об'єктам типу RV Tau. Об'єкти типу RV Тельця належать до RGB. Можливо, це зірки, що знаходяться на стадії перетворення в червоного гіганта. Вони мають достатньо протяжні оболонки (але більш гарячі і менше щільні, ніж у мірід) і, можливо, також як і міріди є пращурами планетарних туманностей.

Незважаючи на те, що інші напівправильні змінні розбиті на чотирьох великі групи, існує ряд об'єктів, який володіє деякими характеристиками, що належать відразу декільком групам або, навпаки, їх не можна приписати жодної з класифікацій. Наприклад, довгий час до типу RV Tau відносили зірку UU Her. Вона цікава тим, що в неї два різноманітних періоди діють поперемінно. Період 90 днів замінився інтервалами хаотичної зміни блиску, що потім замінився інтервалом регулярних коливань із періодом 71 день. Після цього період знову став 90 днів. Проте по змінах показників кольору цю зірку не можна віднести до типу RV Tau, скоріше це окремий підтип SRd.

Більшість зірок із групи SRc раніш відносились до неправильних змінних. Характерними представниками є \x03B1 Ori, \x03B1 Her, \x03BC Cep. З однієї сторони вони подібні з підтипом AІ Sco (RV Tau), тому що виявляють невеличкі коливання блиску з амплітудою 0,2-0,5 зоряних вуличин і з періодом 50-200 днів, що накладаються на добре виражені зміни блиску з періодом 700-2500 днів і з амплітудою 1-2 зоряних величин. Але всі SRc-зірки належать до спектральному класу М, і якби не було довгоперіодичних коливань блиску, зірки цього типу були б дуже подібні зі змінними типу AF Cyg.

На зірки типу AF Cyg дуже схожі зірки типу RS Cnc, але періодичність у них дотримується набагато краще і форма кривої блиску більш стійка. Характерним для цих зірок є те, що іноді після цілого ряду більш-менш правильно минулих періодів форма кривої блиску раптом порушується, а амплітуда зменшується від 1,0 до 0,2 зоряних величин і навіть ще менше. Блиск зірки в такий час відчуває неправильні дрібні коливання. Після декількох місяців зірка знову починає показувати звичайні напівправильні зміни.

Часто між зірками різних типів, але однакових підтипів і однакових спектральних класів існують, швидше за все, тільки фотометричні розходження, фізична ж природа може бути однаковою. Наприклад, SRb-зірки спектрального класу М мають ту ж середню світність, що і Lb-зірки такого ж спектрального класу. Крім цього, у них збігається і просторовий розподіл. Ще одна загальна властивість — це те, що серед усіх довгоперіодичних змінних, крім RV Tau, є джерела мазерного випромінювання в лініях молекул окису кремнію, водяного пару і гидроксилу. Загальною рисою можна вважати також емісію в спектрах, що характерна не тільки для мірід, але і для SR-зірок, правда в менших випадках.

Що стосується повільних неправильних змінних типів Lb і Lc, те швидше за все, це просто недостатньо вивчені зірки. Багато хто з них при подальшому дослідженні можуть виявитися напівправильними або пульсуючиими інших типів.

Космічні мазери

Світлові хвилі - це лише мала частина величезного діапазону довжин хвиль, що випромінюються і поглинаються різноманітними космічними об'єктами. Значну інформацію про ці об'єкти несуть радіохвилі. Радіовипромінювання носить шумовий характер і має неперервний спектр, що охоплює широкий діапазон. Радіотелескоп виділяє на робочій довжині хвилі з цього спектра порівняно вузьку смугу радіочастот. Радіохвилі з довжиною хвилі більше 30 метрів не проходять через іоносферу Землі, а радіохвилі з довжиною хвилі менше 1 сантиметра поглинаються молекулами атмосферних газів. Основне призначення антени радіотелескопа - зібрати максимальну кількість енергії, принесеної радіохвилями від об'єкта. Ця кількість енергії прямо пропорційна ефективній площі антени.

Радіоспостереження за останні 30 років призвели до істотного перегляду поглядів на структуру міжзоряного середовища. Зокрема, відкриття мазерного радіовипромінювання молекул дало початок цілому напрямку сучасної астрофізики і по праву ставиться в один ряд із такими видатними досягненнями, як виявлення квазарів, реліктового випромінювання і пульсарів.

Назва "мазер" походить від початкових букв англійської назви молекулярних квантових генераторів "Microwave Amplification by Stimulated Emission of Radiation" - посилення мікрохвиль за рахунок змушеного випромінювання. Це явище було передбачено А. Ейнштейном у 1917 році. А лабораторний мазер був створений у 1951 році американським вченим Чарльзом Таунсом для хронометражу часу з високою точністю і для посилення слабкого мікрохвильового випромінювання. Космічні мазери були відкриті в 1965 році. Американські вчені виявили в спектрах радіовипромінювання деяких нічим не примітних туманностей дуже яскраві і вузькі лінії випромінювання з довжиною хвилі 18 см. Спочатку навіть припустили, що це випромінювання належить невідомій речовині, що було названо "містеріум". Але буквально через декілька тижнів "містеріум" розділив долю своїх "оптичних братів" - "небулія" і "коронія". Дослідження показали, що незвичні лінії належать міжзоряному гідроксилу ОН, а їхні аномальні властивості обумовлені мазерним механізмом випромінювання.

Як же виникає мазерне випромінювання? Для того щоб пояснити це, необхідно зробити невеличкий відступ в область хімії і квантової механіки. Якщо система тіл, що випромінюють і поглинають (у нашому випадку це атоми і молекули в зірці) замкнута, то фотони, за допомогою яких тіла обмінюються енергією, повинні бути в рівновазі з атомами, що родять ці фотони. У обміні енергією беруть участь фотони всіх енергій, що теж саме — електромагнітні хвилі всіх довжин. Умова теплової рівноваги, що рано або пізно наступає в замкнутій системі, потребує, щоб відношення енергії поглинання до енергії випромінювання було однаковим для всіх довжин хвиль. Цю теорему довів у 1860 році німецький фізик Густав Кірхгоф. Зміст цього закону полягає в тому, що число поглинених фотонів даного сорту (тобто даної енергії) при тепловій рівновазі дорівнює числу випроменених фотонів того ж сорту. Звідси випливає, що якщо предмет сильно поглинає які-небудь промені, то ці ж промені він сильно випромінює. Випромінювання відбувається, коли система переходить із стана з більшою енергією в стан із меншою енергією. Якщо атом поглинає фотон з енергією h(, то він переходить у збуджений стан (його електрони переходять на більш віддалені від атомного ядра орбіти). У цьому збудженому стані атом існує деякий невизначений час, а потім знову повертається на низький рівень. Цей процес називається спонтанним випромінюванням. Така рівновага називається динамічною. Атом поводиться, як кулька, яку важко утримувати на шпичастій вершині гірки: незначний подув — і рівновага порушена. Кулька вкотиться в ямку, здебільшого в найглибшу, з котрої його можна витягти лише сильним ударом. Про атом, що спустився на найнижчу сходинку, говорять: атом знаходиться в стабільному стані. Проте, крім положень "на вершині" і в "глибокій ямі" існує ще і проміжна ситуація: кулька може знаходитися в неглибокій ямі, відкіля її можна визволити невеличким поштовхом. Таке положення називається метастабільним. Так що крім збудженого і стабільного існує ще і третій вид рівнів енергії — метастабільний. Закон збереження енергії потребує, щоб число переходів зверху вниз дорівнювало числу переходів знизу вверх. Чим визначається число переходів вверх? Двома факторами: числом атомів на нижньому поверсі і числом ударів, що піднімуть на верхній поверх. Ну, а число переходів униз? Воно визначається числом атомів на верхньому поверсі, і начебто б більше ні від чого не залежить. Проте на досвіді кінці з кінцями не сходилися. Число переходів нагору росло з температурою куди швидше, чим число переходів униз. Модель призводила до нісенітниці. Виходило, що рано або пізно всі атоми будуть загнані на верхній рівень: система буде знаходитися в хитливому стані, а випромінювання не буде. От цей неможливий висновок і призвів Ейнштейна до думки, що на переходи атома з верхнього поверху на нижній впливає ще якась обставина. Залишалося припустити, що крім спонтанного переходу на низький рівень існує і перехід змушений (або індукований).

От що це таке. Система знаходиться на верхньому рівні. До нижнього рівня її відокремлює різниця E2-E1=h(. Надається, якщо на систему падає фотон з енергією, рівної h(, то він змусить перейти систему на ніжний рівень. Сам падаючий фотон при цьому не поглинеться, а піде далі в супроводі з новими, породженими атомами при переході, точно такої ж частоти як і перший.

Спектри атомів виникають у результаті електронних переходів. Як тільки ми переходимо від атомів до молекул, відразу ж виникає необхідність в урахуванні ще двох складових енергії. Отже, фізичний стан молекули визначається її енергією, тобто спроможністю взаємодіяти з навколишнім середовищем, і її положенням у просторі, тобто — орієнтацією (мал.13). Молекула може обертатися в просторі і атоми можуть чинити коливання по відношенню один до одного. Таким чином, стан молекули описується станом її електронної хмари (електронні рівні), станом коливального руху (коливальні рівні) і станом обертання (обертальні рівні). Треба оперувати трьома типами даних, можна сказати "номером будинку", "поверху" і "квартири". Але що грає яку роль? Які енергетичні рівні розділені великими проміжками (при яких переходах потрібна велика енергія фотона, а отже, довжина хвилі випромінюється більш коротка), а які малими (менша енергія фотона і великої довжини хвилі)? Два електронних рівні e' і e'' — "номера будинків". "Поверхи" — коливальні рівні, а "номера квартир" — обертальні рівні. Як очевидно, проміжки між обертальними рівнями самі маленькі. Саме тут і виникає радіовипромінювання. Для того щоб це радіовипромінювання було мазерним, необхідна участь як мінімум трьох рівнів енергії, позначимо їх 1, 2 і 3, і відсутність теплової рівноваги між молекулами, що випромінюють, і навколишнім середовищем. Це значить, що в середовищі діє якійсь процес, котрий весь час переводить молекули на верхній (третій) рівень енергії, тобто в збуджений стан. Такий процес називається механізмом накачування. Це можуть бути процеси зштовхування або інфрачервоне випромінювання зірки. При переходах молекул у більш низький енергетичний стан вони можуть "затриматися" на деякому проміжному метастабільному рівні (на рівні 2). При цьому випромінювання не буде, а енергія молекул перейде в енергію обертання або коливання. Якщо на метастабільному рівні 2 збирається значно більше молекул, чим на основному (рівень 1), то говорять, що виникла інверсна перенаселеність і тоді фотон, що відповідає частоті переходу із метастабільного рівня 2 на основний 1 не поглинеться, а, навпаки, призведе до того, що молекули почнуть переходити на основний рівень із випромінюванням таких же самих фотонів. Виникає лавина індукованих переходів, що призводить до багатократного посилення випромінювання в лінії 2-1 (мал.13). Це і є мазерне випромінювання. Його основна особливість це — гостра спрямованість потоку випромінювання, недосяжна ні в яких устроях, оскільки підсилити можна тільки випромінювання, що йде в строго визначеному напрямку.

У нашої і у сусідніх галактиках виявлено декілька сотень космічних мазерів. Їх можна розділити на два основних типи: 1) мазери, що випромінюються молодими (вік менше 105 років) гарячими ОВ - зорями і хмарами зореутворення; 2) мазери, пов'язані з холодними зірками великої світності, що сильно проеволюціонували. Мазери 1-го типу знаходяться на периферії газо-пилових комплексів, у безпосередній близькості від компактних зон HII випромінювання. Наприклад, туманність Оріона, області зореутворення W3, W49, W51, Стрілець B2, спіральна галактика NGC 253, пекулярна галактика з подвійним ядром IC 4553 і ін. Найвидатніший мазер на небі — це мазер на молекулах водяного пари, що йде від області HII, що позначається W49. Потужність його випромінювання у вузькому спектральному діапазоні порівнянна зі світністю Сонця у всьому спектрі електромагнітного випромінювання.

Космічні мазери 2-го типу знаходяться в оболонках , що розширюються, зір-надгігантів типу VY Великого Песа або змінних зірок типу Міри Кита. Ці мазери більш багаточисленні, причому зміна потужності мазерного потоку змінюється разом із зміною візуального й інфрачервоного блиску цих зірок. У оболонках холодних зірок мазерні лінії випромінюють в основному три види молекул. Це молекули гідроксилу (ОН), води (H2O) і окису кремнію (SiО). Всього мазерне випромінювання було знайдено майже у 400 зірок.

Література:

В. П. Цесевич “Переменные звезды и их наблюдение” Москва “Наука” 1980

Р. Киппенхан “100 миллиардов солнц рождение, жизнь, и смерть звезд” Москва “Мир” 1990

В.И.Марсакова (журнал "Наше небо")

The online video editor trusted by teams to make professional video in minutes