/  
 ДОКУМЕНТІВ 
20298
    КАТЕГОРІЙ 
30
Про проект  Рекламодавцям  Зворотній зв`язок  Контакт 

Обчислення визначника методом Гауса, Детальна інформація

Тема: Обчислення визначника методом Гауса
Тип документу: Реферат
Предмет: Комп`ютерні науки
Автор: Олексій
Розмір: 0
Скачувань: 980
Скачати "Реферат на тему Обчислення визначника методом Гауса"
Сторінки 1   2   3   4   5   6  
det(A) =a1kA1k+a2kA2k+…+ankAnk(k=1,2,…,n).

Доведемо теорему стосовно визначника третього порядку. Формула дає

det(A)=a11(a22a33-a23a32)+a12[-(a21a33-a23a31)]+a13(a21a32-a22a31)=a11A11+a12A12+a13A13 .

Аналогічно

det (A)=a21A21+a22A22+a23A23=…=a13A13+a23A23+a33A33.

Доведена теорема дає можливість звести обчислення визначника n – го порядку

3) до визначника (n–1)–го порядку. Формули називають формулами розкладання визначника за елементами і–го рядка (k–го стовпця).

Теорема 3.2. Сума добутків елементів довільного рядка (стовпця) матриці на алгебричні доповнення відповідних елементів іншого її рядка (стовпця) дорівнює

нулю :

j ;j=1,2,…,n);

s; s=1,2,…,n).



Текст програми на мові Turbo Pascal.

Uses crt;

const n=4;

var

m,v,vv,mm:array [1..n,1..n] of real;

I,j:integer;k,d:real;

begin

writeln(‘введи матрицю’);

for i:=1 to n do

for j:=1 to n do

begin

readln(m[I,j]);

end;

for i:=2 to n do

for j:=1 to n do

begin

k:=m[I,1]/m[1,1];

v[1,j]:=m[1,j];

Сторінки 1   2   3   4   5   6  
Коментарі до даного документу
Додати коментар