/  
 ДОКУМЕНТІВ 
20298
    КАТЕГОРІЙ 
30
Про проект  Рекламодавцям  Зворотній зв`язок  Контакт 

Пошук, сортування та поняття складності, Детальна інформація

Тема: Пошук, сортування та поняття складності
Тип документу: Реферат
Предмет: Комп`ютерні науки
Автор: Олексій
Розмір: 0
Скачувань: 795
Скачати "Реферат на тему Пошук, сортування та поняття складності"
Сторінки 1   2   3   4   5   6   7   8   9  
{ k – права границя в черговому проході }

for i := 1 to k - 1 do

if A[i] > A[i+1]

then swap (A[i], A[i+1])

end

Тут і далі процедура swap задає обмін значень своїх параметрів. Як бачимо, разом виконується (n-1)+(n-2)+…+1= n\xF0D7 (n-1)/2 порівнянь. Очевидно, що найбільше можливе число елементарних дій за цим способом прямо пропорційне кількості порівнянь. Тому час сортування масиву з n елементів у такий спосіб прямо пропорційний n\xF0D7 (n-1).

3. Поняття складності алгоритму та задачі

У цьому параграфі ми познайомимося з двома поняттями, які відіграють у програмуванні одну з ключових ролей. Цими поняттями є складність алгоритму та складність задачі. Почнемо з алгоритмів.

Нагадаємо, що алгоритм розв'язання масової задачі описує розв'язання будь-якого її екземпляра. Екземпляри багатьох задач можна охарактеризувати значенням деякого числового параметра. Наприклад, довжиною масиву чи кількістю чисел, які треба прочитати з клавіатури. Або натуральним числом, про яке ми хочемо дізнатися, чи просте воно. Найчастіше цим параметром є кількість скалярних значень, обробка яких задається алгоритмом. Кажуть, що екземпляр задачі має розмір N, якщо задається даними, складеними з N скалярних значень (наприклад, масивом із N елементів).

Нехай A позначає алгоритм розв'язання деякої масової задачі. Позначимо через F(A, екземпляр) кількість елементарних дій у процесі розв'язання цього екземпляра задачі за алгоритмом A, а через F(A, n) – максимум кількості елементарних дій серед усіх екземплярів розміру n.

Наприклад, якщо при бульбашковому сортуванні масив спочатку відсортований навпаки, то слідом за кожним порівнянням відбувається обмін. А це ще три присвоювання. Якщо нехтувати допоміжними операціями із змінами індексів, то

F(A, n)=4\xF0D7 n\xF0D7 (n-1)/2.

Кожному n = 1, 2, 3, … відповідає певне значення F(A, n), тобто ми маємо функціональну залежність між розмірами n та максимальними кількостями елементарних дій, виконуваних за алгоритмом A. Ця функція називається складністю алгоритму A. Алгоритми практично всіх реальних задач мають складність, монотонно неспадну за n.

Аналітичне задання функції F(A, n) для реальних алгоритмів, як правило, неможливе й не потрібне. Велике практичне значення має так званий порядок зростання F(A,n) за n. Він задається за допомогою іншої функції з простим аналітичним виразом, яка є оцінкою для F(A, n).

Функція G(n) є оцінкою для функції F(n), або F(n) є функцією порядку G(n), коли існують такі додатні скінченні числа C1 і C2, що за деякого m при всіх n > m

C1\xF0D7 G(n) \xF0A3 F(n) \xF0A3 C2\xF0D7 G(n).

Така залежність між функціями позначається за допомогою знака "О":

F(n) = O(G(n)).

, де C>0, C<\xF0A5 .

.

Для оцінки складності переважної більшості реальних алгоритмів достатньо логарифмічної, степеневої та показникової функцій, а також їх сум, добутків та підстановок. Усі вони монотонно зростають і задаються простими аналітичними виразами.

Приклад 1. n\xF0D7 (n-1) = O(n2), оскільки за n > 2 маємо

0.5\xF0D7 n2 < n*(n-1) < n2.

Аналогічно неважко довести, що n3 + 100\xF0D7 n2 = O(n3) = o(n3.1) = o(2n), 100\xF0D7 logn + 10000 = O(logn) = O(lgn) = o(n).\xF0E7

Приклад 2. Складність алгоритму бульбашкового сортування tb(n)=O(n2), алгоритму лінійного пошуку – t1(n)=O(n), бінарного пошуку – t2(n)=O(logn)=o(n).\xF0E7

Тепер означимо поняття складності задачі. Алгоритми пошуку в упорядкованому масиві свідчать, що одна й та сама задача може мати алгоритми розв'язання з різною складністю. Неформально, під складністю задачі розуміють найменшу зі складностей алгоритмів її розв'язання. Іншими словами, задача має складність порядку G(n), якщо існує алгоритм її розв'язання зі складністю O(G(n)) і не існує алгоритмів зі складністю o(G(n)).

Наприклад, складність задачі пошуку в упорядкованому масиві визначається складністю алгоритму двійкового пошуку, тому й оцінюється функцією logn. Задача сортування масиву має складність порядку n\xF0D7 logn. Доводити ці факти ми не будемо – можна подивитися, наприклад, у книгу [АХУ]. Але в наступному параграфі ми наведемо алгоритми сортування з цією оцінкою складності.

4. Ефективні алгоритми сортування

4.1. Сортування злиттям

В основі цього способу сортування лежить злиття двох упорядкованих ділянок масиву в одну впорядковану ділянку іншого масиву.

Сторінки 1   2   3   4   5   6   7   8   9  
Коментарі до даного документу
Додати коментар