Оптичні властивості твердих тіл, Детальна інформація

Оптичні властивості твердих тіл
Тип документу: Реферат
Сторінок: 3
Предмет: Фізика, Астрономія
Автор: фелікс
Розмір: 78
Скачувань: 1479
БУДОВА І ОПТИЧНІ ВЛАСТИВОСТІ МОЛЕКУЛ І ТВЕРДИХ ТІЛ

Попередні зауваження і загальна характеристика хімічних зв'язків

1. На основі квантової механіки були створені сучасні уявлення про будову й оптичні властивості атомів , в тому числі і багатоелектроних атомів. Перейдемо до вивчення будови й оптичних властивостей молекул - найменших частинок даної речовини, що володіють його основними хімічними властивостями.

Молекули складаються з однакових або різноманітних атомів, сполучених між собою в одне ціле міжатомними зв'язками, що іноді називають хімічними зв'язками. Існування молекул як стійких систем показує, що хімічні зв'язки атомів у молекулах повинні бути обумовлені наявністю між атомами деяких сил взаємодії, що зв'язують атоми в молекулах один з одним. Досвід показує, що для того щоб роз'єднати молекулу на її складові атоми, необхідно прикласти деяку роботу. Це означає, що створення молекули супроводжується виділенням енергії. Так, наприклад, два атоми водню у вільному стані мають більшу енергію, чим ті ж атоми, сполучені в двохатомну молекулу. Це є доказом наявності сил, що зв'язують атоми в молекулах, причому енергія, що виділяється при утворенні молекули, є мірою тих сил взаємодії, що з'єднують атоми в молекулах.

Далі ми зупинимось головним чином на фізичному змісті сучасного вчення про будову й оптичні властивості молекул і твердих тіл, залишаючи осторонь дуже складний математичний апарат, застосований у сучасній теорії для вивчення цих важливих розділів фізики.

2. Для роз'яснення фізичного змісту найважливіших закономірностей, що пояснюють причини, по котрим електрично нейтральні атоми можуть утворити стійку молекулу, можна обмежитися розглядом найпростіших двохатомних молекул, що складаються з двох однакових або різноманітних атомів.

Експериментальні факти показують, що сили міжатомної взаємодії в молекулах виникають між зовнішніми валентними електронами атомів. Про це в першу чергу свідчить відзначена різка зміна оптичного спектра атомів при вступі їх у хімічну сполуку і, навпаки, зберігання незмінного рентгенівського характеристичного спектра атомів незалежно від роду хімічних сполук, у які входять ці атоми. Нагадаємо, що лінійчаті спектри визначаються станом зовнішніх, валентних електронів, а рентгенівські характеристичні - внутрішніх, глибинних електронів атомів. З іншого боку, очевидно, що в процесі хімічної взаємодії, у механізмі утворення хімічних зв'язків, повинні брати участь ті електрони, для зміни стана яких потрібно порівняно невелика енергія. Ними є зовнішні, валентні електрони атомів, потенціали іонізації якихих значно менше, ніж в електронів, що знаходяться на внутрішніх забудованих оболонках.

3. Незалежно від природи тих сил, що призводять до утворення стійкої системи з двох атомів (двохатомної молекули), можна висловити деякі загальні розуміння про характер цих сил.

Атоми, розведені на значну відстань один від одного , не взаємодіють один з одним. В міру зменшення відстані r між ядрами атомів зростають сили взаємного тяжіння, що діють між атомами. Проте ці сили не є єдиними.

На малих відстанях між атомами виявляють свою дію сили взаємного відштовхування, що не дозволяють електронам даного атома занадто глибоко проникнути всередину електронних оболонок іншого атома. Як і у випадку взаємодії між молекулами, сили тяжіння й відштовхування по-різному залежать від відстані r між атомами. Сили відштовхування є більш короткодіючими, чим сила тяжіння . При збільшенні відстані між атомами сили выдштовхування зменьшуються швидше, чим сила тяжіння. Завдяки одночасній дії протилежно спрямованих сил - тяжіння й відштовхування на деякій відстані r0 між атомами обидві сили врівноважують один одного і їхня геометрична сума дорівнює нулю. Цій відстані відповідає найменша взаємна потенційна енергія Wp(r) атомів двохатомної молекули.

Мал. 1. Мал. 2.

На мал. 1 приведені криві залежності відстані r від сил тяжіння F2, відштовхування F1 і результуючої сили F взаємодії атомів у такій молекулі, причому позитивними вважаються сили відштовхування. На мал. 2 приведена крива залежності r від потенційної енергії Wp(r) взаємодії двох атомів у молекулі. Рівноважна міжатомна відстань r, у молекулі називається довжиною зв'язку і є важливою характеристикою будови молекули. Розмір D (на криві мал. 2) від мінімуму потенційної енергії до осі абсцис, до котрого крива Wp(r) асимптотично наближається при необмеженому зростанні р, має велике значення. Вона чисельно дорівнює роботі, що треба зробити для того, щоб розірвати звязок атомів у молекулі, роз'єднати молекулу на складові її атоми і перенести атоми на безкінечну відстань один від одного. Ця робота D являє собою так звану енергію дисоціації молекули, або енергію зв'язку. Очевидно, що енергія дисоціації чисельно дорівнює енергії, що виділяється при утворенні молекули, але протилежна їй за знаком: енергія дисоціації негативна, а енергія, що виділяється при утворенні молекули, позитивна. Таким чином, незалежно від природи сил, що утворять хімічний зв'язок атомів у молекулі, цей зв'язок може бути кількісно схарактеризований двома параметрами: енергією зв'язку D і довжиною зв'язку r0.

4. Найпростіше припущення про природу хімічного зв'язку атомів у молекулі полягає в тому, що між зовнішніми електронами атомів виникають електричні сили взаємодії, що утримують атоми один біля одного. Проте неодмінною умовою усталеності молекули в цьому випадку буде виникнення в двох взаємодіючих атомів протилежних за знаком електричних зарядів, тяжіння між котрими і забезпечить хімічний зв'язок. Подібний тип хімічного зв'язку дійсно здійснюється в деяких молекулах. Взаємодіючі атоми при цьому перетворюються в іони. Один з атомів, що приєднав до себе один або декілька електронів, набуває негативний заряд і стає негативним іоном. Інший атом, що віддав відповідну кількість електронів, перетворюється в позитивний іон. Між протилежно зарядженними іонами виникає електростатичне тяжіння. Подібний тип зв'язку називають іонним зв'язком. Цей зв'язок називають також гетерополярним (від грецького слова «гетеро» - «різний»). Молекули, у яких здійснюється такий тип зв'язку, називаються іонними, або гетерополярними молекулами.

5. У дуже великому числі молекул, у тому числі й у найпростіших двохатомних молекулах (Н2, 02, N2, Cl2 і ін.), не відбувається переходів електронів від одного атома до іншого і не створюються протилежно заряджені іони. Найпростішим доказом цього є те, що в парах речовин, що складаються з таких молекул, при повідомленні їм достатньої енергії відбувається дисоціація молекул на нейтральні атоми. Іонні ж молекули дисоціюють на вільні протилежно заряджені іони, що може бути встановлено різноманітними методами хімічного аналізу і вивченням дії на ці іони електричних і магнітних полях. Хімічний зв'язок, що здійснюється між електрично нейтральними атомами в молекулі, називають ковалентним, абогомеополярним, зв'язком (від грецького слова «гомео» -«однаковий»). Цей зв'язок характерний для молекул, що складаються з однакових атомів, відкіля і здобув назву. З'ясування природи гомеополярного зв'язку стало можливим тільки на основі квантової механіки і є її видатним успіхом. Молекули, у яких здійснюється такий тип зв'язку, називають гомеополярними, або атомними, молекулами.

6. Поділ хімічних зв'язків на два типи - іонних і гомеополярних- є у відомій мірі умовним. У великому числі випадків зв'язок має характерні риси обох типів зв'язків і лише детальні теоретичні й експериментальні дослідження дозволяють встановити в кожному випадку співвідношення між ступенем «іонності» і «гомеополярності” зв'язку.

Іонні молекули

Типовими прикладами іонних молекул, у яких здійснюється гетерополярний зв'язок, є молекули лужно - галоїдних солей, утворених іонами атомів елементів I і VI груп періодичної системи Менделєєва: NaCI (Na+Cl-), RbBr (Rb+Br-), Cs (Сs+J-) і ін. Метали першої групи мають порівняно невеликі розміри потенціалів (ф іонізації, наприклад для атома Na енергія, що відповідає потенціалу іонізації J =еф, складає 5,1 ев. З іншого боку, атоми VI групи (металоїди) характеризуються великим розміром так називаної електронної спорідненості. Під цим терміном розуміється кількість енергії, що виділяється при приєднанні електрона до нейтрального атому металоїду. Наприклад, для хлору Cl цей розмір складає 3,8 ев. Перехід електрона від атома Na до атома Cl призводить до утворення іонів Na+ і Сl -, кожний із який володіє стійкою зовнішньою вісьмиелектроною (s + р) підгрупою, характерною для атомів благородних газів, що не вступають у хімічний зв'язок. Електростатичне тяжіння протилежно заряджених іонів на дуже малих відстанях між ними заміняється силамивідштовхування, що перешкоджають подальшому зближенню іонів. Іон Na+ і Cl надаються на рівній відстані друг від друга, що відповідає зрівноважуванню сил тяжіння й відштовхування. Так виникає іонна молекула NaCI. У зв'язку з тим, що взаємодія іонів носить в основному кулонівський характер, іонний зв'язок має ненаправленний характер. Крім того, на відміну від інших видів хімічного зв'язку іонний зв'язок не може бути насичений.

2. Порівняння потенціалів іонізації металів і електронної спорідненості металоїдів показує, що майже завжди розмір еф енергії іонізації декілька перевищує електронну спорідненість. Для випадку NaCI перевищення складає 1,3 ев. Таким чином, перехід електрону від атома Na до атома Cl не може відбуватися самовільно і потребує витрат деякої кількості енергії. З іншої сторони відомо, що при утворенні молекул виділяється енергія. Щоб зрозуміти, звідки береться енергія, що бракує для іонізації атома лужного металу, варто врахувати, що при зближенні іонів виділяється електростатична енергія їхньої взаємодії. Утворення іонів і їхнє зближення являє собою єдиний процес, що відбувається одночасно і лише після того, як атоми зблизяться настільки, що разом з утворенням іонів виділяється необхідна для цього кількість енергії. Легко підрахувати, що потенційна електростатична енергія Wp(r) взаємодії двох однозарядних іонів, що знаходяться на відстані r, рівна Wp(r)=е2/4Pe0r, заповнить різницю між енергією іонізації й електронної спорідненості в 1,3 ев при r = 11·10-10 м =11А. Тут е -розмір елементарного заряду, рівного заряду електрона, e0 - електрична постійна в системі СІ. Таким чином, перехід електрона від атома Na до атома Cl може починатися лише при r <11А. Проте, як показують дані рентгенноструктурного аналізу й інші методи, рівноважна відстань r0 у молекулі NaCI складає усього 1,4А. При цій відстані електростатична енергія Wp=е2/4Pe0r складає 10,2 ев і на 8,9 ев перевищує енергію, необхідну для утворення іонів Na+ і Cl- в одній молекулі. При перерахунку на один моль це складає енергію в 49 200 дж, або 205 ккал, виділену при утворенні молекул. Досвід показує, що цей розмір декілька завищений, тому що він не враховує внеску в потенційну енергію сил відштовхування, що трохи зменшує цю енергію.

Молекули з ковалентним хімічним зв'язком

1. Ковалентний хімічний зв'язок спостерігається між нейтральними атомами. У класичній фізиці був відомий лише один тип сил, що діють між електрично нейтральними частками, - гравітаційні сили. Проте ці сили здаються занадто слабкими, щоб ними можна було пояснити взаємодію між атомами в гомеополярній молекулі. Крім того, ковалентний зв'язок має властивість насичення, що виражається в наявності визначеної валентності атомів. Атом водню може бути пов'язаний тільки з одним атомом водню, атом вуглецю може зв'язати чотири атома водню, але не більше. Властивість насичення цілком належить класичним силам (гравітаційним, електричним і магнітним). Якщо розмір сил тяжіння між атомами на дуже малих відстанях і міг би бути більшим і тим самим пояснив би зв'язок атомів, та, як відомо, сили тяжіння припускають тяжіння необмеженого числа часток одним центральним тілом. Таким чином, насичення хімічних зв'язків - це істотно не класичний ефект - виключає можливість пояснення хімічних зв'язків гравітаційними силами.

2. Ковалентний зв'язок, крім двохатомних молекул типу H2, спостерігається у великого числа молекул неорганічних сполук і в багатьох органічних молекулах (фтористий водень HF, окис азоту NO, аміак NH3, метан СН4, і ін.). Найпростішою молекулою з ковалентним зв'язком є молекула водню H2, що складається з двох протонів і двох електронів. Спектроскопічні дані показали, що в цієї молекули рівноважна відстань r0 між ядрами - протонами - дорівнює 0,74 А. Енергія зв'язку D (мал. 2) складає для молекули водню 4,718 ев, або 103,24 ккал/моль.

3. Кількісна теорія гомеополярного зв'язку стосовно до молекули водню була розроблена В. Гайтлером і Ф. Лондоном у 1927 р. на основі квантової механіки.

Розглянемо два атоми водню, ядра яких знаходяться в точках а и b на відстані R друг від друга. Припустимо, що обидва атоми знаходяться в основних s-станах. Якщо R дуже велико, то атоми не взаємодіють і повна енергія системи W буде дорівнювати подвоєній енергії основного стану атома водню, тобто:

W=2W1

При зближенні атомів між ними виникає взаємодія, що характеризується деякою енергією Wp(R), що залежить від відстані між атомами, так що повна енергія W системи виразиться в такий спосіб:

мал. 3

Якщо R \x2192\x221E, те Wp (R) \x21920. З факту існування стійкої молекули водню випливає, що при зближенні атомів Wp(R) спочатку повинна зменшуватися від 0 при R = \x221E до деяких негативних значень при кінцевих R, що відповідає тяжінню атомів. Потім при малих відстанях R енергія Wp(R) повинна збільшуватися і ставати позитивною, що відповідає відштовхуванню атомів. Такий характер зміни Wp(R) випливає з загальних розумінь, викладених в хімічному зв'язку і залежних, від природи. Задачею квантово-механічного розрахунку було обчислення Wp(R). Ми роздивимося лише суть цього розрахунку, залишаючи осторонь математичні розрахунки. Нехай електрон l, що належить атому, ядро якого знаходиться в точці а, розташований на відстані r1a від цього ядра (мал. 3). Його відстань від ядра b позначим через r1b. Аналогічно електрон 2, що належить ядру b, знаходиться від ядер а и b на відстанях г2a і г2b. Через r12 позначимо взаємну відстань між електронами. На мал. 3 зображені електронні хмари двох атомів водню і позначені усі відстані. Як очевидно з малюнка, при кінцевій відстані R між ядрами відбувається часткове перекриття електронних хмар обох електронів. Обидва електрони в молекулі водню є тотожними, нерозрізненими частками. У відповідності зі сказаним про принцип Паулі, ці обидва електрони можна поміняти місцями: електрон l може належати ядру b, а електрон 2 - ядру а і це призведе до тієї ж системі - молекулі водню, що складається з двох ядер і двох електронів. Стан такої системи в квантовій механіці може визначатися або симетричною, або антисимметричною координатними хвилевими функціями. При цьому, відповідно до принципу Паулі, повна хвилева функція системи тотожних електронів, тобто хвилева функція, що залежить від координат електронів і від орієнтації їхніх спінов, повинна бути обов'язково антисиметричною.

4. Розрахунок енергії взаємодії Wp(R) провадиться з урахуванням обох можливих станів молекули водню і призводить до такого її значення:

:

\x1621\x4D68\x2123\x4300\x1E4A\x4F00\x034A\x5100\x034A\x6D00H\x6E04H\x7304\x2248\x7504\x0108\x3A00екриття електронних хмар. Найбільше значення, рівне l, інтеграл S(R) досягає при R = 0, коли обидва атоми водню як би зливаються разом. Цей випадок, зрозуміло, не має змісту і тому інтеграл S(R) має в молекулі H2 позитивне значення, менше одиниці. Для якісної оцінки поведінки енергій W+p(R) і W-p(R) взаємодії атомів у молекулі інтеграл S(R) істотної ролі не грає.

The online video editor trusted by teams to make professional video in minutes