Оптичні властивості твердих тіл, Детальна інформація
Оптичні властивості твердих тіл
Таким чином, наявність зв'язку між маятниками призвело до розщепленння власної циклічної частоти, однакової для обох маятників, на дві частоти w0 + dw і w0 - dw. Коливанням із розщепленими частотами відповідають k + k' різноманітні прямування маятників. Підставивши частоту w2 = k + k'/m у співвідношення для x1/x2 отримаєм
А підставивши в те ж співвідношення частоту w2- =k + k'/m , маємо
Можна сказати, що частоті w- відповідає симетричне коливання системи, коли обидва маятники рухаються в одну сторону (мал. 7, а), а частоті w_ - антисиметричне коливання системи, коли маятники зміщаються в протилежні сторони (мал. 7, б).
Розглянутий приклад допомагає усвідомити викладене вище явище розщеплення енергетичних рівнів електронів у молекулі водню. При зближенні двох атомів водню обидва електрони, що рухаються навколо обох ядер, можна розглядати як якусь єдину систему пов'язаних електронів. У такій системі енергетичний рівень 2W1 розщеплюється на два рівні W+ і W-, що відповідають симетричної й антисиметричної координатним хвилевим функціям системи. Отримані результати мають загальний характер. Вони справедливі і для більш складних молекул, чим молекула водню, а також для взаємодіючих атомів, що не утворять молекул (наприклад, для атомів у кристалічній градці твердого тіла). Проте для атомів, що містять Z електронів і взаємодіють між собою, помітне росщеплення енергетичних рівнів виникає лише для зовнішніх, валентних електронів. Для цих електронів істотними надаються ті ж квантовомехані ефекти, про котрий вище йшла мова стосовно до молекули водню.
4. Такою же уявою в квантовій механіці одержує своє пояснення й утворення зон дозволених значень енергії електронів (зонний енергетичний спектр) у кристалах твердих тіл.
Утворення зонного енергетичного спектра електронів у кристалі може бути зрозуміло, якщо звернутися до співвідношення невизначеностей і використовувати вираз для прозорості потенційного бар'єра. У ізольованому атомі через кінцевість часу \x03C4 життя електрона в збудженому стані (\x03C4 = 10-сек} природна ширина dW енергетичного рівня составляє
і визначає природну ширину спектральних ліній. У кристалі валентні електрони атомів, слабше пов'язані з ядрами, чим внутрішні електрони, можуть переходити від одного атома до іншого за допомогою тунельного ефекту усмоктування крізь потенційний бар'єр, що розділяє атоми в кристалі. Це призводить до того, що енергетичні рівні таких електронів розширюються і перетворюються в зони (смуги) дозволених значень енергії електронів.
У кристалі атоми сближені та сильно взаємодіють. Це призводить до перекриття електронних хмар валентних електронів і для L варто вибрати розмір, сумірний з періодом кристалічнї градки (L = 10'8 см). Оцінимо час \x03C4, протягом якого валентний електрон належить даному атому, тобто знаходиться усередині прямокутної потенційної ями з лінійними розмірами dw= 10-8 см (лінійний розмір атома). Якщо швидкість прямування електрона в атомо-потенціній ямі - прийняти рівної 108 см/свк, то за 1 сек електрон разом підійде до бар'єра. Частота усмоктування електрона крізь бар'єр запишеться виразом
Розмір \x03C4 середнього часу життя електрона в даного атома буде дорівнює
Підставляючи в ці вирази чисельні значення всіх розмірів, одержимо dw 10-16 с, відкіля по співвідношенню непевностей отримаємо
Таким чином, замість природної ширини dW = 10-7 ев електронного енергетичного рівня в ізольованому атомі в кристалі виникає зона дозволених значень енергії із шириною порядку електронвольт, тобто в 107 разів ширше, чим в ізольованого атома.
Можна показати, що така картина спостерігається тільки для валентних електронів. Внутрішні електрони атомів мають незначну можливість усмоктування крізь бар'єр і переходу до іншого атому. Для таких електронів різко росте висота бар'єра: L/o - W = 103 эв і порівняно невеличке збільшення його ширини призводить при підстановці в попередню формулу до цілком іншого результату: \x03C4 = 1020 років. Таким чином, уширення енергетичних рівнів глибинних електронів атомів не може йти ні в яке порівняння навіть із природним уширенням рівня валентних електронів в ізольованому атомі.
Молекулярні спектри
1. Познайомившись із фізичними основами утворення хімічних зв'язків, що обумовлюють існування молекул і їхня будова, перейдемо тепер до вивчення оптичних властивостей молекул і в першу чергу спектрів, що випромінюються молекулами.
У попередніх главах були розглянуті спектри атомів, що складаються з окремих ліній, що утворять серії. Усередині кожної серії атомного спектра спектральні лінії знаходяться на різних відстанях друг від друга, до межі серії вони зближаються. Молекулярні спектри вже по зовнішньому вигляду сильно відрізняються від атомних. Вони являють собою сукупність більш-менш широких смуг, утворених тісно розташованими спектральними лініями. Усередині кожної смуги лінії в одного з її країв розташовуються настільки тісно, що вони зливаються, і край смуги має размитий характер. Молекулярні спектри за їхній характерний вид називають смугастими спектрами. Смуги в молекулярних спектрах спостерігаються в інфрачервоному, видимому й ультрафіолетовому діапазонах частот електромагнітних хвиль. Достатньо близько розташовані смуги утворять групи смуг. У спектрах двохатомних молекул спостерігається декілька груп смуг. З ускладненням будівлі молекул ускладнюються їхні спектри. Так, у багатоатомних молекул складної конфігурації в ультрафіолетовій і видимій областях спектра спостерігаються лише суцільні широкі смуги поглинання (випромвнення).
2. З того, що нам відомо про механізм виникнення спектральних ліній, можна укласти, що й у молекулах окрема спектральна лінія повинна виникнути в результаті зміни енергії молекули. Повну енергію W молекули можна розглядати як ту, що складається з декількох частин.
А підставивши в те ж співвідношення частоту w2- =k + k'/m , маємо
Можна сказати, що частоті w- відповідає симетричне коливання системи, коли обидва маятники рухаються в одну сторону (мал. 7, а), а частоті w_ - антисиметричне коливання системи, коли маятники зміщаються в протилежні сторони (мал. 7, б).
Розглянутий приклад допомагає усвідомити викладене вище явище розщеплення енергетичних рівнів електронів у молекулі водню. При зближенні двох атомів водню обидва електрони, що рухаються навколо обох ядер, можна розглядати як якусь єдину систему пов'язаних електронів. У такій системі енергетичний рівень 2W1 розщеплюється на два рівні W+ і W-, що відповідають симетричної й антисиметричної координатним хвилевим функціям системи. Отримані результати мають загальний характер. Вони справедливі і для більш складних молекул, чим молекула водню, а також для взаємодіючих атомів, що не утворять молекул (наприклад, для атомів у кристалічній градці твердого тіла). Проте для атомів, що містять Z електронів і взаємодіють між собою, помітне росщеплення енергетичних рівнів виникає лише для зовнішніх, валентних електронів. Для цих електронів істотними надаються ті ж квантовомехані ефекти, про котрий вище йшла мова стосовно до молекули водню.
4. Такою же уявою в квантовій механіці одержує своє пояснення й утворення зон дозволених значень енергії електронів (зонний енергетичний спектр) у кристалах твердих тіл.
Утворення зонного енергетичного спектра електронів у кристалі може бути зрозуміло, якщо звернутися до співвідношення невизначеностей і використовувати вираз для прозорості потенційного бар'єра. У ізольованому атомі через кінцевість часу \x03C4 життя електрона в збудженому стані (\x03C4 = 10-сек} природна ширина dW енергетичного рівня составляє
і визначає природну ширину спектральних ліній. У кристалі валентні електрони атомів, слабше пов'язані з ядрами, чим внутрішні електрони, можуть переходити від одного атома до іншого за допомогою тунельного ефекту усмоктування крізь потенційний бар'єр, що розділяє атоми в кристалі. Це призводить до того, що енергетичні рівні таких електронів розширюються і перетворюються в зони (смуги) дозволених значень енергії електронів.
У кристалі атоми сближені та сильно взаємодіють. Це призводить до перекриття електронних хмар валентних електронів і для L варто вибрати розмір, сумірний з періодом кристалічнї градки (L = 10'8 см). Оцінимо час \x03C4, протягом якого валентний електрон належить даному атому, тобто знаходиться усередині прямокутної потенційної ями з лінійними розмірами dw= 10-8 см (лінійний розмір атома). Якщо швидкість прямування електрона в атомо-потенціній ямі - прийняти рівної 108 см/свк, то за 1 сек електрон разом підійде до бар'єра. Частота усмоктування електрона крізь бар'єр запишеться виразом
Розмір \x03C4 середнього часу життя електрона в даного атома буде дорівнює
Підставляючи в ці вирази чисельні значення всіх розмірів, одержимо dw 10-16 с, відкіля по співвідношенню непевностей отримаємо
Таким чином, замість природної ширини dW = 10-7 ев електронного енергетичного рівня в ізольованому атомі в кристалі виникає зона дозволених значень енергії із шириною порядку електронвольт, тобто в 107 разів ширше, чим в ізольованого атома.
Можна показати, що така картина спостерігається тільки для валентних електронів. Внутрішні електрони атомів мають незначну можливість усмоктування крізь бар'єр і переходу до іншого атому. Для таких електронів різко росте висота бар'єра: L/o - W = 103 эв і порівняно невеличке збільшення його ширини призводить при підстановці в попередню формулу до цілком іншого результату: \x03C4 = 1020 років. Таким чином, уширення енергетичних рівнів глибинних електронів атомів не може йти ні в яке порівняння навіть із природним уширенням рівня валентних електронів в ізольованому атомі.
Молекулярні спектри
1. Познайомившись із фізичними основами утворення хімічних зв'язків, що обумовлюють існування молекул і їхня будова, перейдемо тепер до вивчення оптичних властивостей молекул і в першу чергу спектрів, що випромінюються молекулами.
У попередніх главах були розглянуті спектри атомів, що складаються з окремих ліній, що утворять серії. Усередині кожної серії атомного спектра спектральні лінії знаходяться на різних відстанях друг від друга, до межі серії вони зближаються. Молекулярні спектри вже по зовнішньому вигляду сильно відрізняються від атомних. Вони являють собою сукупність більш-менш широких смуг, утворених тісно розташованими спектральними лініями. Усередині кожної смуги лінії в одного з її країв розташовуються настільки тісно, що вони зливаються, і край смуги має размитий характер. Молекулярні спектри за їхній характерний вид називають смугастими спектрами. Смуги в молекулярних спектрах спостерігаються в інфрачервоному, видимому й ультрафіолетовому діапазонах частот електромагнітних хвиль. Достатньо близько розташовані смуги утворять групи смуг. У спектрах двохатомних молекул спостерігається декілька груп смуг. З ускладненням будівлі молекул ускладнюються їхні спектри. Так, у багатоатомних молекул складної конфігурації в ультрафіолетовій і видимій областях спектра спостерігаються лише суцільні широкі смуги поглинання (випромвнення).
2. З того, що нам відомо про механізм виникнення спектральних ліній, можна укласти, що й у молекулах окрема спектральна лінія повинна виникнути в результаті зміни енергії молекули. Повну енергію W молекули можна розглядати як ту, що складається з декількох частин.
The online video editor trusted by teams to make professional video in
minutes
© Referats, Inc · All rights reserved 2021