Задачі з геометрії, Детальна інформація

Задачі з геометрії
Тип документу: Задача
Сторінок: 8
Предмет: Математика
Автор:
Розмір: 112.5
Скачувань: 1987
що й потрібно було довести

при вершині і даній сумі довжини бокових сторін а+b рівнобедрений трикутник має найменшу основу.

Розв’язання Нехай a+b=q; a, b, c – сторони трикутника. За теоремою косинусів запишемо:



, тобто при а=b

Задача 15. З усіх трикутників з однаковою основою і одним і тим же кутом при вершині знайти трикутник з найбільшим периметром

Розв’язання.

Розглянемо трикутник АВС з основою АС і позначимо через а, b, c – довжини сторін. Кути, які відповідають сторонам а, b, c позначимо відповідно А, В, С. Покладемо а+b+c=Р.

За теоремою синусів запишемо:



Знайдемо периметр:



. У даному випадку А=С і \x0394АВС рівнобедрений.

§2. Задачі на екстремум в стереометрії

Розглянемо два підходи до розв’язку стереометричних задач на знаходження максимумів та мінімумів – геометричний та аналітичний. Геометричні та інші елементарні методи в останній час все більше і більше витісняється методами аналізу, використання яких ми розглянули раніше. Вважають, що оскільки математичний аналіз дозволив за допомогою диференціального числення стандартно розв’язувати задачі на знаходження екстремумів, але немає ніякої необхідності у вивченні геометричних і інших специфічних методів. Необхідно відмітити, що не тільки математичний аналіз використовує різні прийоми для знаходження екстремумів. Можна привести багато прикладів, коли елементарні методи приводять швидше до результату, ніж методи диференціального числення. Наведемо деякі приклади.

Задача 16. Знайти найбільшу площу проекції одиничного куба на площину.

Розв’язання.

.



Задача 17. Дано куб АВСDА1В1С1D1 з ребром 1. Знайти найменшу відстань від точки М, розміщеної на колі, вписаному в АВСD, до точки N, розміщеної на колі, вписаному навколо трикутника А1ВD.

. Залишилось довести, що ця відстань досягається і для кола першого і другого. Для цього спроектуємо з 0 менше коло на більшу сферу.

Отримаємо на більшій сфері коло, яке перетинається з колом, яке проходить через А1, В і D.

Розглянемо задачу, для розв’язання якої використовується аналітичні елементарні методи.

з центром в точці О.

Знайти найменшу довжину відрізка РQ.

Розв’язання.

В правильній піраміді SАВС прямі SА і ВС перпендикулярні. LM - спільний перпендикуляр SА і ВС, розміщений в площині SАH (мал. 5. а)), при цьому точка L – середина ВС. Очевидно, що LM перетинає SH в тій же точці О, що й площину, яка проходить через В перпендикулярно SА. Ця площина є ВСМ.

В трикутнику SLА маємо:

.

.

The online video editor trusted by teams to make professional video in minutes